Студопедия — Метод Лагранжа
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Лагранжа






Оптимизация играет важную роль при экологических исследованиях и поиске наилучших характеристик объекта или наименьших затрат ресурсов.

Оптимизации подвергается целевая функция, которая в этом
случае выражается через какие-либо параметры (факторы), при не-
которых заданных ограничениях. В общем случае задача оптимизации формулируется следующим образом: найти значения параметров х 1, х 2,..., х n, при которых целевая функция

Y= f (х 1, х 2 ,..., х n)

принимает максимальное (минимальное) значение при функциональных ограничениях, выражаемых в виде равенств

F 1 =f 1(х 1, х 2 ,..., х n)

F 2 =f 2(х 1, х 2 ,..., х n) (9.1)

………………………..


F m =f m(х 1, х 2 ,..., х n)

и областных ограничений в виде неравенств

Ф11(х 1, х 2 ,..., х n) ≤ b1
Ф22(х 1, х 2 ,..., х n) ≤ b2

……………………… (9.2)

Фpp(х 1, х 2 ,..., х n) ≤ bp

Для решения таких задач могут быть использованы методы: диффуренциро-ваия, множителей Лагранжа, численные методы, математическое программирование и др.

При оптимизации методом дифференцирования оптимум находится приравниванием частных производных целевой функции и затем из решений совместной системы n-уравнений находится значение всех переменных х i.

i=

Пример. Стоимость продукта зависит от степени его очистки х, ма-
териалов на очистку k1 и затрат труда k2 что выражается зависимостью

При этом чистота продукта (х) изменяется в пределах от 25%
до 90%, а имеющиеся средства на очистку равны , где — максимальная сумма денежных средств.

Требуется найти такое значение х, при котором затраты С ми-
нимальны.

Р е ш е н и е. Находим производную

Откуда

.

Это оптимальное значение получено без учета ограничений
25% < х < 90% и . Если они при этом удовлетворяются, то
обычно решение находится путем использования в качестве ограничения соответствующего предельно допустимого значения, т.е. для
нашего примера нижнего (25%-ного) или верхнего(90%-ного) уровня. При наличии функциональных ограничений их обычно можно
использовать до начала дифференцирования для уменьшения числа
параметров и, таким образом, основная задача не меняется.

Метод множителей Лагранжа используется, когда целевая функция находится при функциональных ограничениях. Задача решается следующим образом.

Оптимизировать целевую функцию

Y= f(х 1, х 2,..., х n) (9.3)


при ограничениях

Ф1= φ1(х 1, х 2,..., х n) = 0

Ф2= φ2(х 1, х 2,..., х n) = 0

………………………. (9.4)


Фm= φm(х 1, х 2,..., х n) = 0.

Дифференцируя целевую функцию, найдем ее дифференциал и
приравняем его кнулю

Дифференцируем каждые т ограничений

……………………..

Умножаем каждое из т уравнений (9.4) на неизвестный
параметр λi, i= , называемый множителем Лагранжа. Эти множители различны для разных уравнений.

Имеем

……………………

Если теперь сложить вместе все эти уравнения, прибавив уравнение dY, то получим:

или

Поскольку все параметры хi независимы, чтобы это уравнение
удовлетворялось, каждый из n заключенных в скобки членов предыдущего уравнения должен равняться нулю. Отсюда получим n
уравнений вида:

i=


Имеется также m уравнений. Таким образом, имеется всего (n +
m) уравнений с (n + m) неизвестными: n неизвестных хi, и т неиз-
вестных . Решение этой системы даст искомое оптимальное реш
ение.

Пример. Требуется построить цилиндрический резервуар емкостью 10м3 при наименьшем расходе материала. Таким образом, целевой функцией является площадь поверхности А= 2πr2+ 2 πrl, где r —
радиус цилиндра; l — высота цилиндра. Функциональное ограничение V= πr2 l = 10м3.

Р е ш е н и е. Находим производные

Уравнение ограничения :

Отсюда получим три уравнения

,

определяющих три неизвестных r, l и , т.е.

4πr+2πl+λ(-2πl)=0;

-2πr+ λ(πr2)=0;

V= -πr2 l = 0

Решая уравнения, получим:

λ = l =2r; r=

при V= 10м3; r = 1,167м; l = 2,334м.

 

назад

 







Дата добавления: 2015-04-16; просмотров: 575. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия