Студопедия — Компонентные и топологические уравнения механической системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Компонентные и топологические уравнения механической системы






а) Базисные переменные.

Сосредоточенные массы, отображаемые на динамических моделях механических систем, в силу позиционных связей могут совершать только простейшие виды движений – поступательное и вращательное, либо сложное движение, которое представляется сочетанием этих простейших видов. Поступательное движение твердого тела характеризуется линейной скоростью u и силой F, а вращательное – угловой скоростью ω и вращающим моментом M.

Они и принимаются в качестве базисных переменных механической системы:

· потоковые переменные – скорость v(м/с) и ω(рад/с);

· потенциальные переменные – силы F (Н) и моменты M (Н×м).

б) Параметры элементов.

Параметром инерционного элемента при поступательном движении является масса m(кг), а при вращательном движении момент инерции J(кг×м2).

Параметр диссипативного элемента – коэффициент сопротивления µ, называемый также коэффициентом вязкого трения или коэффициентом демпфирования. При поступательном движении измеряется в Н×с/м, а при вращательном – в Н×м×с/рад.

Параметр упругого элемента – коэффициент жёсткости С. При поступательном движении в качестве единицы измерения коэффициента С используется размерность Н/м, а при вращательном – Н×м/рад.

в) Компонентное уравнение инерционного элемента получают на основе второго закона Ньютона. Для поступательного движения твердого тела уравнение имеет вид:

а для вращательного –

где и Fu, и Mu - соответственно сила инерции и момент сил инерции (или инерционный момент) элемента; v u, и ωu - скорости инерционного элемента.

Скорости vu и ωu представляют собой абсолютные скорости сосредоточенных масс соответственно при поступательном и вращательном движениях. Если твердое тело совершает сложное движение, то для каждого вида движения составляется свое компонентное уравнение инерционного элемента.

Математическое описание диссипативного элемента основано на использовании закона Стокса для вязкого трения. При поступательном движении компонентное уравнение имеет вид:

а при вращательном:

где F д, M д соответственно сила и момент вязкого трения; vд, ω д - скорости диссипативных элементов.

Согласно закону Гука, сила упругости деформируемого механического элемента пропорциональна величине деформации:

Fу = cΔ,

где Δ = x1- x2 - деформация элемента; x1, x2 – перемещения выделенных сосредоточенных масс; c - жесткость элемента.

Выражая перемещение x через базовые переменные v или ω, получаем следующие компонентные уравнения упругих элементов.

При поступательном движении:

При вращательном движении:

где Fу, Mу - соответственно сила и момент упругих элементов; g = 1/c - податливость элемента. Упругие и диссипативные элементы в динамической модели соединяют между собой сосредоточенные массы. В этой связи, скорости указанных элементов v у, ωу, vд, ω д представляют собой относительные скорости соединяемых ими сосредоточенных масс:

Силы F и, F д, Fу и моменты M и, M д, Mу инерционных, диссипативных и упругих элементов характеризуют их взаимодействия в динамической модели. Они представляют собой внутренние силы системы. При движении системы под действием приложенных к ней внешних сил и моментов происходит изменение её кинетической и потенциальной энергии, а часть энергии затрачивается на преодоление сил трения. Инерционные элементы динамической системы отображают свойство системы накапливать кинетическую энергию, упругие элементы – свойство накапливать потенциальную энергию, а диссипативные – рассеивать энергию путем превращения механической энергии в тепловую энергию.

г) Топологические уравнения.

Первое топологическое уравнение является уравнением равновесия, его выражает принцип Даламбера: геометрическая сумма всех сил приложенных к твердому телу, включая силу инерции, равна нулю:

(5.4)

Уравнение (5.4) соответствует поступательному движению твердого тела. При вращательном движении используется уравнение:

(5.5)

Второе топологическое уравнение определяет условие непрерывности потоковых переменных. Оно выражает принцип сложения скоростей при сложном движении твердого тела:

геометрическая сумма абсолютной, относительной и переносной скоростей равна нулю.

Поступательное движение:

вращательное движение:

Количество составляемых топологических уравнений вида (5.4), (5.5) равно числу степеней свободы моделируемой системы.







Дата добавления: 2015-04-16; просмотров: 645. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия