Студопедия — Взаимодействие здания и его элементов с окружающей средой
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимодействие здания и его элементов с окружающей средой






Температурно-влажностный режим помещений определяется совокупностью внешних и внутренних факторов. К внутренним факторам можно отнести тепло-, влаго- и газовыделения от пребывающих в помещениях людей, освещения, эманацию радона и торона с поверхности строительных конструкций, в состав которых входят минеральные заполнители (гранит, мрамор, базальт и др.).

Для отделки помещений (даже при выполнении реставрационных работ) все более широко используются различные синтетические материалы, выделяющие в воздух помещений целый спектр газов и летучих веществ, их степень токсичности и другие вредные воздействия не всегда достаточно компетентно оцениваются при проектировании и выполнении строительных работ.

Внешние факторы — это, как правило, те климатические и природные условия, в которых расположено сооружение. К ним относятся солнечная радиация, температура и влажность наружного воздуха, скорость и направление ветра, продолжительность и интенсивность осадков

и др. Для проектирования систем обеспечения микроклимата, в зданиях перечисленные показатели наружного климата нормируются на основе многолетних наблюдений.

Важно иметь в виду, что любые нормы, даже самые совершенные, разрабатываются, как правило, для современного строительства (чаще всего массового).

Каждый памятник архитектуры является уникальным сооружением, в том числе с позиций формирования в нем микроклиматических условий и влияния на них воздействия наружного климата, объемно-планировочных решений, теплозащитных качеств наружных и внутренних ограждений, назначения здания и режима его эксплуатации, предметов искусства, находящихся в нем и т.д. При реставрации и консервации памятника специалисты в области инженерного оснащения и строительной теплофизики обязаны при выборе расчетных показателей внутреннего микроклимата и наружного климата учитывать эти особенности.

Так, при разработке систем обеспечения микроклимата соборов Московского Кремля были проведены полномасштабные Исследовательские работы, позволившие рекомендовать рациональные и обоснованные решения. В частности, на основании сорбционно-деформативных характеристик материалов был сделан вывод о том, что для Успенского, Архангельского, Благовещенского соборов температура внутреннего воздуха зимой должна быть не менее 18°С, а летом— не более 20°С. Относительная влажность внутреннего воздуха должна составлять 50% при возможном отклонении в течение суток на 5% в сторону увеличения в теплое время года и в сторону уменьшения — в холодное. Подобные результаты послужили обоснованием необходимости оснащения соборов круглогодичными установками кондиционирования воздуха.

Другим примером могут служить комплексные исследования параметров

микроклимата в ряде помещений корпуса Бенуа Государственного Русского музея, которые позволили для климата Петербурга рекомендовать более простую систему регулирования параметров воздушной среды в обследованных помещениях с увлажнением воздуха зимой и подогревом на 3—4°С в весенний и осенний периоды года.

Большое влияние на микроклимат памятника архитектуры и проектирование системы регулирования микроклимата оказывают теплозащитные показатели ограждающих конструкций, которые в памятниках, как правило, отличаются двумя особенностями: большой тепловой инертностью и переменным по высоте сопротивлением теплопередачи, что является следствием различной толщины ограждения в нижней и верхней частях памятника.

Ограждения по-разному реагируют на колебания наружной температуры: одни быстро пропускают эти колебания внутрь помещений (малоинерционные тонкие ограждения), другие (инерционные массивные) медленно. Во втором случае отклонения температуры внутри помещения от требуемых значений оказываются существенно меньшими, чем в первом за счет как бы «накапливания» тепла или холода в толще ограждений. Свойство ограждений сохранять относительное постоянство температуры внутренней поверхности определяется показателем его тепловой инерции, или массивности.

Действующие нормы ориентированы на относительно маломассивные ограждения, для которых и установлены расчетные значения наружной температуры. Выбор расчетной наружной температуры для массивных ограждений требует проведения достаточно сложных расчетов, но зато определяет выбор рациональных и экономичных решений, а кроме того, часто позволяет упростить систему, что для реставрируемых зданий иногда очень важно.

Неудачный выбор расчетной наружной температуры осуществлен при проектировании отопительной системы Казанского собора в Петербурге. В соборе толщина стен (кроме купола) составляет 2,8—1,2 м. Расчеты показывают, что для таких стен расчетная наружная температура не должна быть ниже —17°С. Принятая же температура (по нормам для жилых зданий) составила —26°С. Результат — перетапливание большинства помещений (tв = 24—26°С). Холодно только в молитвенном зале (tв = 10—12°С), но не в связи с недостаточной мощностью отопительной системы, а из-за неорганизованного поступления наружного воздуха через неплотности в световых проемах (особенно в барабане). При проектировании отопления никаких обследований, в том числе и аэрационных, не проводилось.

Следует отметить, что наибольшие неприятности в части режимов функционирования конструкций происходят в холодный период года. В теплое время возникают проблемы, связанные с обеспечением микроклиматических параметров в основном за счет перегрева помещений.

Нормальная работа ограждающих конструкций зимой во многом определяется местом расположения теплоизоляционного слоя. Если тепловая изоляция расположена с внутренней стороны ограждения, это может привести к выпадению конденсата в толщине ограждения. Если тепловая изоляция расположена снаружи, то подобное явление, как правило, исключено.







Дата добавления: 2015-04-16; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия