Студопедия — Построение силовой схемы на Ход-1 (маневровое положение)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение силовой схемы на Ход-1 (маневровое положение)






Перед построением силовой цепи на Ход-1 сначала необходимо назвать предварительные условия:

  • наличие установленного давления в НМ, ТМ и отсутствие давления в ТЦ
  • наличие высокого и низкого напряжения
  • главный разъединитель включён
  • включены все ЛК и КШ (ЛК-5 включается вхолостую)
  • реверсор головного вагона - в положении Вперёд, остальные реверсора - по направлению движения
  • ПСП - в положении ПС, а ПМТ - в положении ПМ
  • РК остаётся на 1й позиции.

Токопрохождение:

Токоприёмники--Силовая коробка--Главный предохранитель--Главный разъединитель--Быстродействующий выключатель--контакты ЛК1--Катушка реле перегрузки 1 группы двигателей--Дифференциальное реле--ЛК3--Якоря 1 группы двигателей--Общая точка Я3, далее две параллельные цепи:

  1. Кулачок реверсора Вперёд--Обмотки возбуждения 1 группы двигателей-- Кулачок реверсора Вперёд--Л6
  2. Контакты КШ1--Индуктивный шунт 1 группы двигателей--Резистор--Кулачок РК25--Общая точка

далее: Силовая катушка РУТ 1 группы двигателей--Диод--Кулачок ПМ3--Кулачок РК3--Полностью введённые пуско-тормозные резисторы 1 группы двигателей--Контакты ЛК2-- Полностью введённые пуско-тормозные резисторы 2 группы двигателей--Кулачок РК4--Датчик тока тормозного режима--Катушка реле перегрузки 2 группы двигателей-- Якорь 2 двигателя--Шунт амперметра с амперметром--Якорь 4 двигателя--Дифференциальное реле-Контакты ЛК4--Кулачок ПМ1--Силовая катушка РУТ 2 группы двигателей-- Общая точка Л16, далее две параллельные цепи:

  1. Кулачок реверсора Вперёд--Обмотки возбуждения 2 группы двигателей-- Кулачок реверсора Вперёд--Л18
  2. Контакты КШ2--Индуктивный шунт 2 группы двигателей--Резистор--Кулачок РК26--Общая точка Л18

далее: Диод--Кулачок ПМ2--Земляные коробки--ЗУМ--Земля.

  • Группы двигателей соединены последовательно.
  • Магнитное поле обмоток возбуждения ТЭД составляет 28% от магнитного поля якоря.
  • Сила тяги - 440 кгс (килограмм-сила) на вагон.
  • Общее сопротивление пуско-тормозных резисторов в силовой цепи - 4,176 Ом (вагоны 81-717.5м).

 

ü Направление тока в обмотках возбуждения 2 и 4 двигателей изменено на противоположное (4 – 2), чтобы обеспечить вращение всех колёсных пар вагона в одном направлении!

 

Построение силовой схемы на Тормоз-1 (дополнительный материал).

Перед построением силовой цепи на Тормоз-1 сначала необходимо назвать предварительные условия:

 

  • Наличие низкого напряжения, установленного давления в НМ, ТМ и отсутствие давления в ТЦ.
  • Реверсор головного вагона строго в положении ВП, остальные реверсора - по направлению движения
  • Включены КСБ1 и КСБ2, а также ЛК2, ЛК3, ЛК4 (ЛК1 и ЛК5 не включаются из-за блокировки ПМУ2)
  • ПМТ в положении ПТ, а ПСП - в положении ПС (тем не менее, группы генераторов соединены параллельно!), РК остаётся на 1й позиции.
  • При скорости более 64 км/ч работают тиристорные регуляторы поля - ТРП (тиристорные ключи).

Цепь состоит из двух контуров- генераторного и тормозного, имеющих между собой две общие точки - Я3 и Л12. В генераторный контур входят 4 генератора, а в тормозной контур включены две параллельные цепи: пуско-тормозные и невыводимые сопротивления (выделены зелёным цветом). Схема построена перекрёстно-мостовым методом, это значит, что ток от якорей 1 группы проходит по обмоткам возбуждения 2 группы и наоборот. Таким образом, если по какой-то причине повысится ток в якорях 1 группы, то это вызовет увеличение возбуждения генераторов 2 группы и, как следствие, увеличение тока в якорях 2 группы до той же величины. При такой схеме достигается хорошая устойчивость работы всех четырёх генераторов и исключает вероятность «опрокидывания», при котором в случае юза генераторы одной группы переходят в моторный режим с изменением направления вращения якорей, а значит, и колёсных пар.

 

Генераторный контур:

1. Точка Я3—якоря 3 и 1 генераторов—ЛК3—ДР—РП1-3—ПТ1—РУТ—Общая точка, далее 2 цепи:

  • Кулачок реверсора Вперёд—Обмотки возбуждения 2 гр. генераторов—Кулачок реверсора Вперёд—Л18
  • Контакты КСБ2—ДРП—Общая точка Л18, далее: Диод—ПТ2—ПТ4—Общая точка Л12.

2. Точка Я3 далее 2 параллельные цепи:

  • Кулачок реверсора Вперёд—Обмотки возбуждения 1 гр. генераторов—Кулачок реверсора Вперёд—Л6
  • Контакты КСБ1—ДРП—Общая точка Л6, далее: Силовая катушка РУТ—Диод—Л9—ПТ3—ЛК4—ДР—якорь 4 генератора—Шунт амперметра с амперметром—Якорь 2 генератора—РП2-4—ДТ—Л12.

 

Тормозной контур состоит из двух параллельных цепей:

1. Точка Л12—РК4—Все пуско-тормозные резисторы 2 группы—ЛК2— Все пуско-тормозные резисторы 1 группы—РК3—Невыводимое сопротивление Л8-Л13—ПТ5—Общая точка Р42.

 

2. Точка Л12—ПТ4—Точка Р10—Невыводимые сопротивления с датчиком напряжения—Точка Р42, далее: РТ2—РКТТ—Общая точка Я3. Затем ток распределяется на обе части генераторного контура.

 

Способы изменения скорости вращения якорей ТЭД (расчёты даны для 81-717.5м).

ХОД - 1.

Если подключить 4 последовательно соединённых двигателя непосредственно к контактному рельсу, то,

учитывая суммарное сопротивление всех обмоток двигателей, в момент их пуска по СЦ прошёл бы ток:

I= 825 В: 0,28 Ом 2950 А

Это привело бы к выходу из строя электрического и механического оборудования (редуктор, карданная муфта). Чтобы избежать аварийного режима при пуске, в СЦ дополнительно вводят ПТР (пуско-тормозные резисторы) 4,176 Ом, поэтому сила тока в СЦ при полностью введённых сопротивлениях будет равна:

I= 825 В: (0,28 Ом + 4,176 Ом) 190 А

Итак, все 4 двигателя соединены последовательно, РК находится на 1 позиции, замкнуты его кулачки РК3 и РК4. Это означает, что в СЦ введены все пуско-тормозные сопротивления. Включены КШ1 и КШ2 (замкнуты РК25 и РК26), поле тяговых электродвигателей ослаблено до 28%, а сила тяги составляет 440 кгс на вагон.

 

  • Ослабление поля обмоток возбуждения на Ход-1 обеспечивает более плавный пуск!
  • Для предотвращения перегрева пуско-тормозных резисторов (ПТР) запрещается следовать в режиме Ход-1 (маневровый режим) более 3 минут непрерывно!

Для дальнейшего увеличения скорости машинист переводит главную рукоятку КВ в положение Ход-2.

ХОД - 2.

При постановке главной рукоятки КВ в положение Ход-2 начинает вращаться СДРК. После ухода РК с первой позиции отключаются КШ1 и КШ2. Магнитное поле тяговых электродвигателей возрастает до 100% и сила тяги также увеличивается почти в 4 раза (до 1600 кгс на вагон), а это, в свою очередь, приводит к увеличению силы тяги и скорости. Когда якоря двигателей начинают вращаться, то в них наводится электродвижущая сила, - ЭДС. Она направлена всегда противоположно приложенному к якорю напряжению, поэтому её называют противо-ЭДС, её направление определяется по Правилу правой руки (см. материалы по электротехнике).

  • Запомните: чем больше скорость вращения якоря, тем больше величина противо-ЭДС!

Следовательно, сила тока (при вращении якоря) с учётом противо-ЭДС будет определяться по формуле:

где:

I - сила тока

U - напряжение

- Е - противо-ЭДС

R - сопротивление пуско-тормозных резисторов

4r -внутреннее сопротивление 4х двигателей.

Из формулы видно, что чем больше скорость вращения якорей (т.е. противо-ЭДС), тем меньше будет сила тока в силовой цепи, следовательно, будут падать сила тяги и ускорение. Следовательно, в какой-то момент увеличение скорости прекратится, поэтому для обеспечения постоянства силы тяги (а значит и силы тока) необходимо ступенчато уменьшать сопротивление в силовой цепи.

 

Для этого РК последовательно замыкает свои кулачки и тем самым, начиная с 3 по 15 позиции, ступенчато уменьшает сопротивление пуско-тормозных резисторов в силовой цепи (1 и 2 позиции сдвоены). Это приводит к увеличению силы тока и, следовательно, к увеличению силы тяги и скорости движения. На 15 позиции все пуско-тормозные сопротивления выведены. Позиции 16, 17 и 18 являются строенными, т.е. никаких изменений в силовой цепи на этих позициях не происходит (на вагонах 81-717.5м РК останавливается на 17 позиции!). На 17 позиции замкнуты кулачки РК13 и РК19 в первой группе, и РК14 во второй группе двигателей. Сопротивление пуско-тормозных резисторов равно 0, скорость поезда 10-12 км/ч.

 

Для дальнейшего увеличения скорости группы двигателей переключаются с последовательного соединения на параллельное. При этом сразу в 2 раза увеличивается напряжение на каждом двигателе. Чтобы предотвратить сильный рывок после перехода на параллельное соединение групп двигателей, в СЦ вновь вводится сопротивление по 0,909 Ом в каждую группу двигателей. Так как РК в момент перехода с ПС на ПП не работал, то очевидно, что сопротивление ввелось в результате действия переключателя положений (сначала замкнулись ПП2 и ПП3, затем разомкнулся ЛК2). Так как после перехода на параллельное соединение все параметры силовой цепи изменились, то 17-я позиция РК последовательного соединения теперь соответствует 20 позиции РК параллельного соединения групп двигателей.

 

Далее опять начинает вращаться СДРК, но уже в обратном направлении. При этом последовательное замыкание кулачков РК снова приводит к уменьшению сопротивления в силовой цепи и увеличению скорости движения. На 32 позиции РК останавливается. Замкнуты его кулачки РК3 и РК4, то есть, сопротивление пуско-тормозных резисторов будет равно 0. Скорость поезда к моменту выхода на 32 позицию РК составляет примерно 30 км/ч.

Для дальнейшего увеличения скорости машинист переводит главную рукоятку КВ в положение Ход-3.

ХОД - 3.

При переводе ГРКВ в Ход-3 сразу включаются контакторы шунтировки КШ1 и КШ2 и параллельно обмоткам возбуждения двигателей (ОВ ТЭД) подключается цепь, состоящая из индуктивного шунта (ИШ) и реостата ослабления поля (ОП). Так как на 32 позиции РК в силовой цепи разомкнуты кулачки РК21-23-25 и РК22-24-26 в 1 и 2 группах двигателей соответственно, то в эту цепь полностью вводятся резисторы ослабления поля. С точки зрения электротехники это означает, что общее сопротивление в силовой цепи каждой группы двигателей уменьшается, так как общее сопротивление для двух параллельных цепей определяется по формуле:

 

 

Таким образом, введя сопротивление параллельно ОВ ТЭД, можно уменьшить общее сопротивление, а значит, повысить силу тока в якорях, то есть, увеличить силу тяги, а это, в свою очередь, приведёт к увеличению скорости движения поезда. Так как при постановке главной рукоятки КВ в Ход-3 вновь начинает вращаться СДРК, то на каждой следующей позиции последовательно замыкаются кулачки РК21-РК23-РК25 в первой группе двигателей и одновременно РК22-РК24-РК26 во второй группе двигателей. Иными словами, РК опять выводит (уменьшает) сопротивление в каждой группе двигателей, что приводит к дальнейшему увеличению скорости. На практике режим «ослабления поля» занимает около 75% всего времени разгона двигателей от 0 до 80 км/ч. Магнитное поле обмоток возбуждения тяговых электродвигателей по отношению к магнитному полю якоря изменяется следующим образом:

32 позиция - 70%, 33 позиция - 50%, 34 позиция - 37%, 35 и 36 позиции (сдвоены) - 28%

 

Таким образом, увеличение скорости вращения якорей ТЭД происходит за счёт увеличения силы тока в якорях, при этом магнитный поток обмоток возбуждения остаётся практически неизменным (он незначительно увеличивается за счёт того, что часть противо-ЭДС, наводимой в обмотках возбуждения (в главных полюсах), гасится в резисторах ослабления магнитного поля.

 

Аппараты защиты силовой цепи (уставки приведены для вагонов 81-717.5м).

 

Главный предохранитель. (см. стр. 19)

Панель с РП. Находится в ящике ЯР-13 под вагоном и состоит из шести реле перегрузки и реле РПвозврат.

Все реле кинематически связаны между собой при помощи валика с упорами, то есть:







Дата добавления: 2015-04-16; просмотров: 674. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия