Студопедия — Зависимость химических свойств элементов от строения электронных оболочек их атомов (Щербина, с. 48)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимость химических свойств элементов от строения электронных оболочек их атомов (Щербина, с. 48)






Если индивидуальность химического элемента определяется зарядом ядра его атомов, то его химические свойства определяются числом и расположением его внешних электронов. «Химия скользит по поверхностным электронам атома» (Я.К.Сыркин).

Первый период включает Н и Не.

Водород имеет только одну К-оболочку, а в ней – одна s-подоболочка с единственным на ней электроном. Таким образом, строение атома водорода наиболее простое – он состоит из одного протона и нейтрализующего его заряд электрона. Вступая в химическое взаимодействие с атомом-окислителем, Н, окисляясь, отдает ему свой электрон и переходит в состояние иона Н+.

Гелий также имеет К-оболочку, с s-подоболочкой, но она уже содержит предельное для такой подоболочки число электронов – 2. Эта электронная пара представляет собой настолько прочную систему, что электроны практически не могут участвовать в химических реакциях, что обусловливая свойства инертного газа.

Второй период состоит уже из 8 элементов – от одновалентного Li до инертного газа – Ne.

Хотя суммарное число электронов лития равно 3, два из них, закончившие первый период гелием (серия К), в валентности не участвуют. Валентным является только один электрон, располагающийся на новой внешней оболочке L, с подоболочкой s. Отдавая свой единственный электрон окислителю, литий может образовать ион Li+, на электронной оболочке (К) которого остаются два электрона. А поскольку такая электронная конфигурация является для атома очень «благоприятной», то для «достижения» ее литий энергично отдает свой единственный электрон. В этом и состоит причина того, что литий – химически очень активный щелочной металла, не встречающийся в природе в самородном состоянии.

Бериллий. Способность Ве отдавать два электрона с его внешней оболочки L, образуя двухвалентный катион Ве2+, также обусловливает его химическую активность. Бериллий охотно образует силикаты, а также фосфаты. Однако по своим свойствам это не столь типичный металл, как литий – он проявляет амфотерность, т.е. может образовывать не только катион, но и комплексные анионы. Поэтому существуют соли – бериллаты.

Бор. Этот элемент может отдавать 3 электрона своей внешней оболочки L, причем два – с подуровня s, и один – с последующего подуровня р. При этом образуется катион В3+. Но бор еще более амфотерен, чем бериллий, и для него анионы (разнообразные борат-ионы) гораздо характернее, чем катионы. Поэтому в природе существует много борных минералов – боратов кальция, магния, железа и некоторых других, а также есть боратосиликаты (турмалин) и всего один силикат бора (где бор выполняет роль катиона) – датолит.

Углерод. Этот элемент может отдавать 4 электрона своей внешней оболочки L, два – с подуровня s, и два – с последующего подуровня р. Но это свойство углерода дополняется новым свойством: помимо отдачи четырех электронов (например, СО2), углерод способен и принимать электроны (например, СН4), т.е. углерод способен не только окисляться, но и восстанавливаться, причем на его внешней электронной оболочке в данном случае будет 8 электронов.

После заполнения 8 электронами оболочки L следующий элемент натрий (Na) имеет один внешний электрон в оболочке М, магний (Mg) – 2 и т.д., до аргона (Ar) включительно. Отличительными особенностями этого ряда является более энергичное соединение кремния Si с О, чем с Н, этим он отличается от углерода С.

Сера S отличается от О не только значительно меньшей прочностью соединения с Н, но и способностью давать шестивалентные соединения катионного типа. Кислород же этой способностью не обладает.

Хлор Cl в отличие от фтора F также дает ряд оксидов и, хотя в этом ряду элементов в оболочке М существует подоболочка d, заполнение ее электронами происходит лишь со следующего периода, начинающегося после Ar, снова одновалентным К, далее двухвалентным Са, электроны которых располагаются в подоболочке s оболочки четвертой оболочки N.

Однако у скандия Sc его третий валентный электрон располагается не в подоболочке р, как в предыдущих периодах, а в подоболочке d оболочки М. У титана Ti, кроме двух электронов в подоболочке s четвертой оболочки N, в подоболочке d третьей оболочки М располагаются уже 2 электрона и т.д.

Таким образом, начиная со скандия, валентные электроны (два) располагаются в четвертой оболочке N, а остальные последовательно заполняют подоболочку d третьей оболочки М, образуя элементы с достраивающимися внутренними электронными оболочками. Поэтому когда число валентных электронов достигает 8, инертный газ не получается, поскольку эти 8 электронов расположены не на одной, а на двух разных электронных оболочках. Поэтому вместо галогена в 7-ой группе периодической системы располагается марганец Mn – типичный металл, образующий только катионы, а в 6-й группе – типичный металл хром вместо неметаллического аналога серы.

Расположение валентных электронов на двух различных энергетических уровнях приводит к тому, что после Ti, валентность которого отвечает номеру группы Периодической системы, у последующих элементов в природных соединениях преобладает валентность более низкая, обычно равная трем или двум.

Так, трехвалентные соединения ванадия V в природе преобладают над пятивалентными, хром Cr встречается почти исключительно в трехвалентном состоянии. Mn, Fe, Co и Ni в эндогенных условиях встречаются в двухвалентных соединениях, а Fe образует трехвалентные. И только в зоне гипергенеза Mn переходит в четырехвалентный, а Со изредка образует Со2О3.

После заполнения (у никеля) восьмью электронами подоболочки d третьей оболочки М, у меди Cu следующий электрон располагается в подоболочке s четвертой оболочки N, а два электрона, занимавшие это место от Са до Ni включительно, переходят в подоболочку d третьей оболочки М, полностью застраивая электронами подоболочку d.

В третьей оболочке М располагаются 18 электронов. Они не образуют такой устойчивой электронной конфигурации, как 2 или 8 электронов, и поэтому Cu, в отличие от Li, Na, K, значительно пассивнее отдает свой внешний электрон, образуя соединения типа Cu2O. Более того, поскольку 18-электронная оболочка значительно менее устойчивая, чем 8-электронная, Cu способна даже из этих 18 электронов отдать один, образуя наиболее распространенный катион Cu2+.

Химическая активность убывает от Cu к Ag. В отличие от всех других металлов 1 группы периодической системы, у Cu, Ag и Au, благодаря 18-электронной оболочке, возникает возможность их нахождения в природе в самородном состоянии.

Находящиеся во второй группе Периодической системы вместе со щелочноземельными элементами Zn, Cd и Hg являются химически значительно более пассивными. Пассивность возрастает от цинка к ртути. Это связано с тем, что отдавая окислителю свои два валентных электрона, Zn, Cd и Hg на поверхности своего двухвалентного катиона имеют не 8, а 18 электронов.

В ряду элементов, начинающихся с цезия, лантан повторяет строение атома Sc и Y, т.е. имея два валентных электрона в шестой оболочке Р, он достраивает свой третий валентный электрон в подоболочке d пятой оболочки О.

Однако у последующих редкоземельных элементов электроны располагаются следующим образом: у Се в подоболочке 4f (четвертой оболочки N) располагается не 1, а 2 электрона, вместо отсутствующего в подоболочке электрона 5d, далее происходит последующее заполнение подоболочки 4f, кроме Gd и Lu, у которых, как и у их предшественников, соответственно 7 и 14 электронов за счет заполнения одним электроном подоболочки 5d. Таким образом, валентность TR, равная трем, обусловлена «внешними» валентными электронами, расположенными в 5-й и 6-ой оболочках О и Р.

Потеряв три валентных электрона, все TR имеют во внешнем слое 8 электронов пятой оболочки О, т.е. подобно K, Mg, Al строят свои ионы по модели инертного газа.

Внутри самой плеяды лантаноидов проявляется ряд особенностей, свойственных первым рядам Периодической системы, а именно имитация периодичности, равной восьми. Восьмым элементом в ряду лантаноидов является Gd, условно занимающий место Ne или Ar. Перед ним происходит понижение валентности, как у галогенов (Eu2+ и Sm2+), а идущий за гадолинием Tb, подобно Na или К после инертного газа, имеет валентность на 1 больше (Tb образует оксид Tb4O7).

Такая общность в электронном строении лантаноидов обусловливает их постоянное совместное нахождение в природе.

В 1923 г. Гольдшмидт экспериментально обнаружил так называемое «лантаноидное сжатие», объяснившее химическое сходство этих элементов. Оказалось, что начиная с Се происходит инверсия и радиусы ионов лантаноидов постепенно сокращаются (от 1.22 А у La до 0.99 А у Lu). Это вызвано тем, что переход от элемента к элементу связан с добавлением нового электрона не на внешнюю орбиталь, а на одну и ту же третью от края f-орбиталь, а т.к. заряд ядра также возрастает, электростатическое притяжение между ядром и электронной оболочкой усиливается и радиус иона сокращается.

Постепенно, около Dy – Ho радиус ионов лантаноидов становится равным иттриевому, а поскольку строение внешних орбиталей у Y, La и всех Ln одинаково, химические и геохимические свойства Y, Dy и Но и других соседних лантаноидов оказываются очень близкими, поэтому эти лантаноиды и называются иттриевыми. Лантан и лантаноиды начала ряда по свойствам трудно отделимы от наиболее распространенного Се и потому называются цериевыми. Граница чаще всего условно проводится перед европием.

Последующее сжатие лантаноидов приводит к тому, что последние из них Er, Tm, Yb и Lu приближаются по свойствам к другому гомологу – Sc и выделяются в скандиевую подгруппу.

Подобное же электронное строение внешних оболочек наблюдается и в ряду элементов, начинающихся Ас. Однако в ряду актиноидов вследствие более сложной постройки их атомов и большей удаленности от ядра в валентности участвуют не только s-электроны оболочки седьмой оболочки Q и один электрон шестой оболочки Р, но и f-электроны пятой оболочки О, обусловливая валентность Th, равную 4, Ра, равную 5, и валентность U, равную 6, вследствие чего эти элементы прочно заняли свои места в 4, 5 и 6 группах Периодической системы, хотя по существу они занимают в периодической системе место, аналогичное РЗЭ.

Таким образом, можно сказать, что в зависимости от своего электронного строения все химические элементы могут быть разделены на элементы-восстановители, отдающие электроны и образующие катионы, и элементы-окислители, приобретающие электроны и образующие анионы.

С точки зрения строения атомов элементы подразделяются следующим образом:

1. Инертные газы, не участвующие в химических процессах, обладающие внешней 8-электронной оболочкой (только у Не – 2-электронная).

2. Атомы, образующие ионы с 8-электронной оболочкой: О, F, Mg, Al, S, Cl, K, Ti, Ce и лантаноиды, Th, U и другие актиноиды и др..

3. Атомы, образующие ионы с 18-электронной оболочкой (Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, I).

4. Атомы переходных элементов, занимающих промежуточное положение между двумя предыдущими группами (Mn, Fe, Co, Ni, Re, Pd, Pt и др.).

У гомологов, т.е. у элементов с одинаковым типом строения внешних электронных оболочек, но различными зарядами ядра, иначе говоря, у элементов одной и той же группы и подгруппы периодической системы, наблюдаются следующие закономерности изменения их химических свойств.

У элементов, образующих ионы с 8-электронной внешней оболочкой, химическая активность возрастает, потенциалы ионизации уменьшаются, переход из металлического состояния в окисное сопровождается закономерным возрастанием выделяющейся при этом энергии, от лития к Na, K, Rb и Cs.

Объясняется это тем, что у более тяжелых гомологов с более сложно построенной электронной оболочкой внешний электрон более удален от ядра, и промежуточные слои электронов играют экранирующую роль – чем больше электронов между ядром и валентным электроном, тем слабее его связь с ядром, тем легче он отрывается, тем больше энергия реакции окисления.

Совершенно иначе обстоит дело у элементов с 18-электронной оболочкой. Отдавая свои внешние валентные электроны при образовании химических соединений, они не достигают столь «желательной» 8-электронной оболочки. У этих элементов (Cu, Ag, Au, Zn, Cd, Hg и др.) по мере увеличения атомной массы (заряда ядра) химическая активность не возрастает, а понижается. И действительно, нахождение в самородном состоянии в ряду Cu-Ag-Au возрастает с порядковым номером элемента.

У элементов, присоединяющих электроны с образованием анионов с 8-электронными оболочками (F, Cl, Br, I, S, Se, Te), химическая активность (в отличие от Li, Na, K, Rb и Cs) убывает с увеличением порядкового номера из-за экранирующего действия электронных слоев.

Устойчивость высших окислов в гомологических рядах переходных элементов V, Nb, Ta; Cr, Mo, W; Mn, Tc, Re увеличивается с порядковым номером. Так, V в эндогенных минералах и горных породах присутствует только в виде трехвалентного соединения и только в зоне гипергенеза встречается в виде 4 и 5-валентных соединений. Cr обычно встречается только в виде трехвалентных соединений. Соединения шестивалентного Мо типичны для зоны окисления, но и в эндогенных условиях он встречается, хотя и редко (молибдошеелит Ca(Mo, W)O4).

Для некоторых гомологических рядов элементов, образующих ионы с 18-электронной оболочкой, наблюдается обратная зависимость: галлий встречается в виде трехвалентных соединений, а таллий почти исключительно в виде одновалентных.

 







Дата добавления: 2015-03-11; просмотров: 627. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия