Студопедия — Перспективы совершенствования персональных компьютеров
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перспективы совершенствования персональных компьютеров






Описывая бурно развивающуюся в настоящее время технологию производства пластиковых транзисторов, ученые приходят к достаточно логичному выводу, что сумма всех усовершенствований приведет к созданию "финального компьютера", более мощного, чем современные рабочие станции. Компьютер этот будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки.

А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

В последнее время высказывались и мысли о том, что давно пора расстаться с электронами как основными действующими лицами на сценах микроэлектроники и обратиться к фотонам. Использование фотонов якобы позволит изготовить процессор компьютера размером с атом. О том, что наступление эпохи таких компьютеров уже не за горами говорит тот факт, что американским ученым удалось на доли секунды остановить фотонный пучок (луч света).

Поколения компьютеров

С этого времени началось весьма энергичное развитие вычислительной техники. Компьютеры первого поколения были изготовлены на основе электронных ламп. Ламповые машины не отличались высокой надежностью – ежедневно перегорали несколько десятков ламп. Кроме того, первые ЭВМ потребляли много энергии и занимали площадь примерно с баскетбольную площадку. Однако их быстродействие было очень высоким по сравнению с традиционными вычислениями: 10-20 тысяч операций в секунду. Первые компьютеры применялись в сфере научно-технических расчетов. Процесс программирования являлся довольно трудоемким, так как приходилось все самим представлять информацию на машинном языке, то есть в двоичном коде с помощью нулей и единиц.

Массовое применение с 50-ых годов полупроводниковых транзисторных устройств привело к появлению компьютеров второго поколения. Замена электронных ламп на транзисторы сделало компьютеры более надежными, экономичными, намного меньшими по размерам и более быстродействующими. Они совершали 100-500 тысяч операций в секунду. Компьютеры стали применяться для решения научно-технических и экономических задач. Процесс программирования существенно усовершенствовался, так как были разработаны более удобные для человека алгоритмические языки программирования.

С начала 60-ых годов появились более совершенные элементы компьютера – интегральные микросхемы, что привело к появлению третьего поколения компьютеров. Интегральные схемы делались на основе кристаллов кремния, которые выращивались в вакууме путем напыления отдельных молекул, а внутрь кристалла вкрапливались отдельные полупроводниковые элементы. В одной микросхеме, сопоставимой по размерам с транзистором, размещалась электронная схема, содержащая сотни элементов. Это приводит к качественному улучшению основных характеристик компьютеров – повышение быстродействия до миллионов операций в секунду.

Совершенствуется программное обеспечение компьютеров: появились специальные программы - операционные системы. Это позволило обрабатывать информацию в режиме разделенного времени, когда компьютер автоматически распределяет ресурсы отдельных аппаратных систем, которые могут параллельно занимаются разными задачами, экономя общее время работы компьютера.

Применение компьютеров расширяется и углубляется: разрабатываются автоматизированные системы управления в различных отраслях промышленности и производства, создаются системы автоматизированного проектирования.

Четвертое поколение

Дальнейшее совершенствование производства интегральных схем привело к появлению БИС (больших интегральных схем). Большими их назвали не потому, что их размер значительно превосходил размеры прежних интегральных схем, а потому, что количество внутренних элементов увеличилось до сотен тысяч элементов (см. график). Стало возможным основное устройство компьютера – процессор, сделать на основе одной БИС. Такие устройства получили название «микропроцессоры».

Совершенствование производства микросхем привело к смене поколения компьютеров на следующее – четвертое. Быстродействие возросло до сотен миллионов операций в секунду, увеличился объем памяти. Появилась возможность обработки текстовой и графической информации. Благодаря появлению компактных персональных компьютеров становится возможным автоматизировать отдельные рабочие места (например, токаря на станке с числовым программным управлением, или бухгалтера).

Пятое поколение

К концу ХХ века компьютеры получили практически повсеместное распространение. Трудно указать сферу деятельности, где не используется компьютер. Дальнейшее совершенствование производства микросхем привело в 90-ых годах к появлению «сверхбольших» интегральных схем (СБИС), внутри которых размещались до десятков миллионов элементов. Быстродействие компьютеров возросло до миллиардов операций в секунду. В эти же годы наблюдается формирование всемирной компьютерной сети, которая в настоящее время широко доступна. Проблема доступа в Интернет сейчас упирается лишь в наличие компьютера, модема и телефонной линии у отдельного человека. Для обслуживания компьютерных сетей были разработаны специальные компьютеры – серверы, которые обладают усиленной памятью и располагаются в «узлах» компьютерных сетей.

 

 







Дата добавления: 2015-04-19; просмотров: 706. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия