Студопедия — Билет 17
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Билет 17






1. Упрочняющая термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии: закалка + старение. Структура и свойства закаленных сплавов. Виды выделений при старении, их влияние на свойства сплавов.

Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии

Переменная растворимость компонен­тов в твердом состоянии дает возмож­ность значительно упрочнять сплавы путем термической обработки. Это при­вело к широкому использованию спла­вов этого типа — стареющих сплавов в качестве конструкционных материалов повышенной и высокой прочности; при­меняют стареющие сплавы на алюми­ниевой, медной, железной, никелевой, кобальтовой, титановой и других осно­вах.

Рассмотрим принцип упрочняющей термической обработки стареющих сплавов на примере системы с промежу­точным соединением (рис.а).

К термически упрочняемым относятся сплавы составов от точки а до промежуточного соединения , в которых при охлаждении из твердого раствора выделяются вторичные кристаллы . При этом степень упрочнения тем выше, чем больше масса вторичных кристаллов и равновесном сплаве (рис.б).

Рассмотрим для примера сплав I состава точки С который в равновесном состоянии имеет двухфазную структуру, состоящую из кристаллов твердого раствора концентрации точки а и относительно крупных вторичных кристаллов .Сопротивление движению дисло­каций подрастает по мере уменьшения расстояний между частицами упрочняю­щей фазы, т. е. сплав I станет прочнее, когда и место немногочисленных крупных включений образуется большое количество мелких. Наибольшее препятствие для движения дислокаций создают включения, отстоящие друг от друга на 25-50 межатомных расстояний. В большинстве стареющих сплавов же­лательная дисперсная структура обра­зуется в результате термической обра­ботки, состоящей из двух операций закалки и старения.

При закалке сплавы нагревают до температур, обеспечивающих распад вторичных кристаллов. Для рассматри­ваемого сплава I такой будет температу­ра, несколько превышающая (см. рис. а). Быстрым охлаждением с тем­пературы закалки полностью подавляю процесс выделения вторичных кристал­лов и в результате получают одно­фазный сплав - перенасыщенный компо­нентом В твердый раствор. Перенасыще­ние твердого раствора относительно мало сказывается на повышении твер­дости и прочности, незначительно изме­няется и пластичность сплавов.

Пересыщенный твердый раствор представляет собой неравновесную структуру с повышенным уровнем сво­бодной энергии. Поэтому, как только подвижность атомов окажется доста­точно большой, твердый раствор будет распадаться - начнется процесс старения. Старение, происходящее при повы­шенных температурах, называют искус­ственным. В сплавах на основе низко­плавких металлов старение может про­исходить при температуре 20-25 С в процессе выдержки после закалки; та­кое старение называют естественным. При старении уменьшается концен­трация пересыщающего компонента в твердом растворе; этот компонент расходуется на образование выделений. Тип выделений (кристаллическая структура), их размер и характер сопря­женности с решеткой твердого раствора зависят как от вида сплава, так и от условий старения т. е. от температуры и времени выдержки.

В общем случае при распаде перенасы­щенных твердых растворов могут возникать образования следующих типов (они перечисляются и порядке возраста­ния энергии активации зарождения):

1) зоны Гинье-Престона;

2) кри­сталлы метастабильной фазы;

3) кри­сталлы стабильной фазы.

Зоны Гиньс-Престона (зоны ГП) представляют собой весьма малые (субмикроскопические) обьемы твердого раствора с резко повышенной концен­трацией растворенного компонента, со­храняющие решетку растворителя. Ско­пление растворенных атомов вызывает местное изменение периода решетки твердого раствора. При значительной разнице в размерах атомов А и В, как это, например, наблюдается в сплавах Al-Cu, зоны ГП имеют форму дисков, толщина которых (учитывая искажения решетки) составляет несколько межа­томных расстояний (рис. а), диаметр 10-50 нм. Диски закономерно ориенти­рованы относительно пространственной решетки растворителя. При небольшом различии в атомных диаметрах компо­нентов, как, например, в сплавах Al-Zn, обогащенные зоны имеют форму сфер.

Метастабильные фазы имеют иную пространственную решетку, чем твер­дый раствор, однако существует сходство в расположении атомов в определенных атомных плоскостях той ил иной решетки, что вызывает образование когерентной {или полу когерент­ной) границы раздела. Когерентная гра­ница при некотором различии кристал­лической структуры приводит к появле­нию переходной зоны с искаженной решеткой (рис.,6). Для метастабильных фаз характерна высокая дис­персность, что значительно повышает сопротивление движению дислокаций.

Стабильная фаза , имеет слож­ную пространственную решетку с пони­женным числом элементов симметрии и е большим числом атомов в элемен­тарной ячейке.

Вторичные кристаллы со стабильной структурой в большинстве сплавов вы­деляются в виде достаточно крупных частиц. Значительное различие кристал­лической структуры твердого раствора и стабильных кристаллов приводит к образованию некогерентной границе раздела

(рис. в) и, соответственно, к минимальным искажениям решетки твердого раствора вблизи границы. Упрочнение сплава при образовании стабильных кристаллов , оказывается меньшим, чем при образовании зон ГП и мета стабильных когерентных кристаллов.

Кривые старения (рис.) принят строить в координатах твердость (прочность)-длительность старения (при постоянной температуре). Условно примем, что максимальное упрочнение сплава I (см. рис. 5.4) достигается при выделении зон ГП.

Температура t0 выбрана настолько невысокой, что распада пересыщенного твердого раствора не происходит и, со­ответственно, не наблюдается измене­ния твердости (прочности) закаленного сплава.

Старение при температуре t1, вызывает повышение прочности вследствие образования зон ГП; если данная тем­пература недостаточна для того, чтобы активировать зарождение метастабильных кристаллов, то твердость (прочности) достигнет максимального значения и в дальнейшем не будет изменяться сколь угодно длительное время (рис. 5.6, сплошная линия). Если темпе­ратура t1 достаточная для зарождения метастабильных кристаллов, то твер­дость после достижения максимального значения начнет понижаться, сплав бу­дет “перестариваться” (рис. 5.6, штриховая линия).
2. Высокопрочные стали. Легированные стали, мартенситностареющие стали: их состав, марки, упрочняющая обработка, применение.

Легированные стали.

Легированной называется сталь, содержащая в своем составе один или несколько специально введенных легирующих элементов в количестве, заметно изменяющем свойства стали.

Принципы маркировки стали:

Марка легированной стали – буквенно-цифровой код ее химического состава.

Каждый элемент обозначается заглавной буквой русского алфавита:

а) по первой букве русского названия Н – Ni; В – W; Т – Ti; Х – Cr; М – Mo; Г – Mn; Д – Cu; Ю – Al; А – N; Б – Nb;

б) по первой букве латинского названия С – Si;

в) просто условное обозначение Ф – V;

Марка легированной стали:

Если число соответствующее содержанию углерода двухзначное, то это содержание углерода в сотых долях процента, если в единицах, то это содержание углерода в десятых долях процента.

 

Широкое применение в технике получила высокопрочная мартенсито-стареющая сталь Н18К9М5Т (<=0.03% С, ~18% Ni, ~9% Co, ~5% Mo, ~0.6 Ti).

Кроме стали Н18К9М5Т нашли применение менее легированные мартенсито-стареющие стали: Н12К8М3Г2, Н10Х11М2Т (sв=1400¸1500МПа), Н12К8М4Г2, Н9Х12Д2ТБ (sв=1600¸1800МПа), KCU=0.35¸0.6 МДж/м2, s0.2=1800¸2000МПа. Мартенсито-стареющие стали имеют высокий предел упругости s0.002=1500МПа.

Мартенсито-стареющие стали применяют в авиационной промышленности, в ракетной технике, в судостроении, в приборостроении для упругих элементов, в криогенной технике и т.д. Эти стали дорогостоящие.

 








Дата добавления: 2015-04-19; просмотров: 602. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия