Студопедия — Собственная проводимость
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственная проводимость






Собственная проводимость

В полупроводниках атомы связаны ковалентными (парноэлектронными) связями, которые при низких температурах и освещенности прочны. С ростом же температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и "дырку". Реальными частицами являются лишь электроны (e). Э лектронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочерёдно замещая друг друга, что эквивалентно движению “дырок” в противоположном направлении. “Дырке” условно приписывается “+” заряд.В чистых полупроводниках концентрация свободных электронов и “дырок” одинаковы. Электронно-дырочная проводимость – проводимость, вызванная образованием свободных носителей заряда (электронов и “дырок”), образующихся при разрыве ковалентных связей, называется собственной проводимостью.


Примесная проводимость – проводимость, обусловленная образованием свободных носителей заряда при внесении примесей иной валентности (n) Донорная примесь nпримеси > nполупроводник Мышьяк в германий nприм. =5; nп/прово-к=4

Каждый атом примеси вносит свободный электрон

Полупроводники n – типа с донорной примесью Основные носители заряда электроны Не основные носители о – “дырки” Проводимость электронная Акцепторная примесь nпримеси < n полупроводник

Индий в германий nприм. =3; nп/прово-к=4 Каждый атом примеси захватывает электрон из основного полупроводника, создавая дополнительную дырку.

В основе работы большинства полупроводниковых приборов и активных элементов интегральных микросхем лежит использование электрических переходов, общим свойством которых является наличие потенциального барьера на границе между полупроводниками. Полупроводники могут отличаться по типу проводимости (p или n), или иметь различные физические характеристики, например:

Электрический переход – переходный слой в полупроводниковом материале между двумя областями с различными типами электропроводности или разными значениями удельной электрической проводимости (одна из областей может быть металлом).

В зависимости от функционального назначения, уровня требуемых электрических параметров в диодах используются следующие типы выпрямляющих и омических электрических переходов.

Выпрямляющий переход – электрический переход, электрическое сопротивление которого при одном направлении тока больше, чем при другом.

Омический переход – электрический переход, электрическое сопротивление которого не зависит от направления тока в заданном диапазоне значений токов.

Электронно-дырочный переход (p-n-переход) – электрический переход между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-типа.

Гетерогенный переход (гетеропереход) – электрический переход, образованный в результате контакта полупроводников с различной шириной запрещенной зоны.

Гомогенный переход (гомопереход) – электрический переход, образованный в результате контакта полупроводников с одинаковой шириной запрещенной зоны.

Переход Шотки – электрический переход, образованный в результате контакта между металлом и полупроводником.

Электронно-электронный переход (n-n+-переход) – электрический переход между двумя областями полупроводника n-типа, обладающими различными значениями удельной электрической проводимости.

Дырочно-дырочный переход (p-p+-переход) – электрический переход между двумя областями полупроводника p-типа, обладающими различными значениями удельной электрической проводимости. Знак «+» условно обозначает область с более высокой удельной электрической проводимостью

 


 

2. P-n переход параметры, вольт – амперная характеристика р-п перехода, ее температурная зависимость.

 

Вольт-амперная характеристика p-n‑перехода

Вольт-амперная характеристика p-n-перехода представляет собой зависимость тока через p-n-переход от величины и полярности приложенного напряжения.

При выводе вольт-амперной характеристики можно предположить, что токи неосновных носителей заряда через переход с изменением полярности и величины приложенного напряжения не изменяются. Токи основных носителей меняются существенно и при приложении обратного напряжения резко уменьшаются.

Токи основных носителей можно рассматривать как токи эмиссии зарядов через контактный слой, скачок потенциальной энергии на котором равен работе выхода электрона. При этом предположении токи основных носителей с увеличением обратного напряжения будут уменьшаться по экспоненциальному закону.

Плотность тока основных носителей можно записать так:

; . (2.48)

Если прикладывать прямое напряжение, высота барьера уменьшается и токи основных носителей будут экспоненциально возрастать. Плотность полного тока через переход будет равна

,

где .

Полный ток можно записать , где – площадь p-n-перехода.

Тогда , (2.49)

где — обратный ток, называемый тепловым током, или током насыщения: . (2.50)

По своей физической природе он представляет собой ток экстракции, следовательно, величина его очень мала. Вольт-амперная характеристика, соответствующая этому выражению, показана на рис. 2.10.

При величина , поэтому при относительно небольшом прямом напряжении ток через переход резко возрастает. При подаче обратного напряжения ток, изменив направление, быстро достигает значения , а далее остается постоянным независимо от величины приложенного напряжения.

Реальная характеристика p-n-перехода отличается от теоретической (рис. 2.11). Эти различия обусловлены термогенерацией носителей в запирающем слое перехода, падением напряжения на сопротивлениях областей полупроводника, а также явлением пробоя при обратном напряжении.

 

 

 







Дата добавления: 2015-04-19; просмотров: 560. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия