Студопедия — Представление о сущности Вселенной в современном естествознании. Модели Вселенной
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Представление о сущности Вселенной в современном естествознании. Модели Вселенной






Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной.

В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов и эпициклов.

С приходом Нового времени первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.

Успехи космологии и космогонии в XVIII—XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения — общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а пространство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бесконечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирующей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность — это разные понятия.

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения — общая теория относительности. Эйнштейн допускал в своей космологической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются. В 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера — изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная — это мир галактик, что наша Галактика — не единственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом

40. Галактики: их строение и эволюция. Характеристика нашей Галактики и ближайших к ней.

Наша галактическая система — рядовая звездная система. На небе в ясную безлунную ночь хорошо видна яркая белесоватая полоса — Млечный Путь. Он простирается (при вечерних наблюдениях) через созвездия Скорпиона, Стрельца, Орла и дальше вверх к созвездиям Лебедя, Цефея и Кассиопеи. При утренних наблюдениях можно проследить его другую ветвь: по созвездиям Персея, Возничего, Тельца, Близнецов, Ориона и Большого Пса. В южном полушарии он проходит через созвездия Паруса, Киля, Южного Креста и Центавра. Таким образом, Млечный Путь образует на небе полный круг. Греки назвали Млечный Путь галактическим (молочным) кругом. Его светлое сияние происходит в основном из-за свечения бесчисленного количества слабых звезд.

Представление о том, что Млечный Путь состоит из огромного числа звезд, восходит еще к Демокриту. Его догадку подтвердил Галилей с помощью своего телескопа.

В XX в. были определены форма и масштабы этой гигантской звездной системы и установлено место, которое занимает в ней наше Солнце. Солнечная система находится между спиральными рукавами, один из которых виден в направлении на центр Галактики в созвездии Стрельца, а другой — в противоположном направлении, в созвездии Персея. Именно в направлении на созвездие Стрельца Млечный Путь выглядит наиболее ярко.

Галактика — это гигантская звездная система, состоящая почти из 200 млрд звезд, и Солнце — одна из них. Вообще галактики — огромные вращающиеся звездные системы. Они различаются и по внешнему виду, и по характеристикам. Помимо звезд в галактики входит межзвездное вещество: газ, пыль, частицы космических фотографиям можно заключить, что это достаточно тонкий диск с утолщением в центре.

Она движется вокруг центра Галактики почти по окружности со скоростью 250 км/с. Орбита Солнца лежит в плоскости Галактики, и один оборот длится 250 млн лет. Масса центральной части Галактики порядка 3 • 1041 кг. Предполагают, что большая масса рассредоточена на периферии Галактики в области радиусом около 100 кпк. Многие звезды образуют группы — скопления. Эволюционные процессы связаны с такими характеристиками звезд, как возраст, химический сохарактеристики движений и пространственное расположение.

Возраст звезд меняется в большом диапазоне значений: от 15 млрд лет (возраст Вселенной) до сотен тысяч лет — самых молодых. Есть звезды, образующиеся на наших глазах.

Сравнительно молодые звезды верхней части последовательности входят обычно в состав рассеянных скоплений, непосредственно наблюдают около 1000 из них, и все они относятся к диску. Кроме рассеянных, в Галактике более 100 шаровых скоплений, представляющих собой достаточно компактные образования из 105—106 звезд. Они названы так потому, что в центре скопления блеск звезд сливается в яркий фон. Ближайшее шаровое скопление можно видеть в созвездии Центавра даже невооруженным глазом в виде размытого пятна. Шаровые скопления очень устойчивы, образуют сферическую подсистему. В них много бело-голубых звезд и мало красных гигантов; многие из них являются источниками мощного рентгеновского излучения. Это объясняют аккрецией межзвездного газа на черные дыры, находящиеся в центре шаровых скоплений.

Движения старых и молодых звезд в Галактике имеют различия: у старых — большие эксцентриситеты орбит, а молодые движутся почти по окружностям. Получаются две подсистемы: молодые звезды быстро вращаются внутри почти неподвижной системы более старых звезд.

Галактический год — период вращения Солнца вокруг центра Галактики. Направляя радиотелескоп в разные участки Млечного Пути, ученые изучили распределение водорода в пространстве облаков, линия водорода на = 21 см оказалась расщепленной. Так установили спиральные рукава, вдоль которых образуются молодые звезды.

Мир галактик столь же разнообразен, как и мир звезд. Долгое время туманные пятнышки, наблюдаемые в телескопы, считали туманностями, относящимися к Галактике (воспринимаемой как вся Вселенная). Это — огромные вращающиеся системы звезд, разнообразные по внешнему виду и физическим характеристикам, размером 1 — 100 кпк. В них находится от 107 до 1012 звезд. Небольшие галактики часто являются спутниками больших галактик. Невооруженным глазом можно увидеть ближайшие к нам галактики — Магеллановы Облака (в Южном полушарии) и туманность Андромеды (в Северном полушарии), они входят в Местную группу галактик (рис. 9.10). Остальные галактики видны только в телескоп как пятнышки. Классификация галактик в каталогах — М с номером. Так, М31 — туманность Андромеды.

41. Солнечная система и её качественная и количественная характеристика.

Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг неё: планеты и их спутники, карликовые планеты и их спутники, а также малые тела — астероиды, кометы, метеороиды, космическую пыль. Солнечная система входит в состав галактики Млечный Путь.

Согласно современным представлениям, Солнечная система сформировалась приблизительно 5 миллиардов лет назад в результате сжатия газопылевого облака.

Все планеты обращаются вокруг Солнца в одном направлении, по эллиптическим орбитам с небольшим эксцентриситетом и малым наклонением к плоскости эклиптики, т. е. плоскости орбиты Земли. Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — орбитальный период составляет 165 лет.

Бо́льшая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°).

Планета Экваториальный диаметр, земной диаметр Масса, земная масса Орбитальный радиус, а. е. Орбитальный период, год Сутки, земные сутки Спутники
Меркурий 0,382 0,06 0,38 0,241 58,6 нет
Венера 0,949 0,82 0,72 0,615   нет
Земля 1,0 1,0 1,0 1,0 1,0  
Марс 0,53 0,11 1,52 1,88 1,03  
Юпитер 11,2   5,20 11,86 0,414  
Сатурн 9,41   9,54 29,46 0,426  
Уран 3,98 14,6 19,22 84,01 0,718  
Нептун 3,81 17,2 30,06 164,79 0,671  

Плуто́н —со своего открытия в 1930 и до 2006 года Плутон считался девятой планетой Солнечной системы. Однако в конце XX и начале XXI веков во внешней части Солнечной системы было открыто множество объектов. Среди них примечательны Квавар, Седна и особенно Эрида, которая на четверть массивнее Плутона (точнее на 27%). 24 августа 2006 года МАС впервые дал определение термину «планета». Плутон не попадал под это определение, и МАС причислил его к новой категории карликовых планет вместе с Эридой и Церерой. После переклассификации Плутон был добавлен к списку малых планет и получил № 134340 по каталогу Центра малых планет. Некоторые учёные продолжают считать, что Плутон должен быть переклассифицирован обратно в планету.

Малые тела Солнечной системы — этот термин введен Международным астрономическим союзом в 2006 году для описания объектов Солнечной системы которые не являются ни планетами, ни карликовыми планетами, ни их спутниками: Все прочие объекты за исключением спутников, вращающиеся вокруг Солнца должны быть отнесены к "Малым телам Солнечной системы"... В настоящее время в этот список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), комет, и прочих малых тел.

Определение касается: всех малых планет; классических астероидов; кентавры и троянцы;

транснептуновые объекты (исключая карликовые планеты); все кометы.

В настоящее время нет ясности касательно включения в будущем определения о нижней границе размеров малых тел Солнечной системы или определение будет касаться любого материала до уровня метеороидов.

Исключениями являются не только крупные тела, имеющие гидростатическое равновесие, естественные спутники (луны) отличаются от малых тел Солнечной системы не размерами, а орбитами. Естественные спутники вращаются не вокруг Солнца, а вокруг других объектов Солнечной системы, таких как планеты, карликовые планеты, и сами малые тела Солнечной системы.

Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.

Орбиты подавляющего большинства малых тел Солнечной системы расположены в двух различных областях, называемых пояс астероидов и пояс Койпера. Эти два пояса имеют свои внутренние структуры, вызванные возмущением больших планет (в частности Юпитера и Нептуна соответственно) и имеют плохо определяемые границы. Другие области Солнечной системы также содержат малые тела, но в гораздо меньшей концентрации. Они включают в себя околоземные астероиды, кентавры (астероиды), кометы, объекты рассеянного диска.

Наименьшие макроскопические тела, имеющие орбиты вокруг Солнца, называются метеороиды. (Есть ещё более мелкие объекты, такие как межпланетная пыль, частицы солнечного ветра и свободные атомы водорода). определение околоземного объекта относит объекты до 50 м в диаметре в категорию метеороидов. Королевское астрономическое общество выдвинуло на рассмотрение новое определение, по которому метеороиды имеют диаметр от 0,1 мм до 10 м. Более мелкие частицы будут относится к межпланетной пыли, молекулам газа и отдельным атомам.

Планеты Солнечной системы и их общая характеристика.

Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг неё: планеты и их спутники, карликовые планеты и их спутники, а также малые тела — астероиды, кометы, метеороиды, космическую пыль. Солнечная система входит в состав галактики Млечный Путь.

Согласно современным представлениям, Солнечная система сформировалась приблизительно 5 миллиардов лет назад в результате сжатия газопылевого облака.

Все планеты обращаются вокруг Солнца в одном направлении, по эллиптическим орбитам с небольшим эксцентриситетом и малым наклонением к плоскости эклиптики, т. е. плоскости орбиты Земли. Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — орбитальный период составляет 165 лет.

Бо́льшая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°).

Планета Экваториальный диаметр, земной диаметр Масса, земная масса Орбитальный радиус, а. е. Орбитальный период, год Сутки, земные сутки Спутники
Меркурий 0,382 0,06 0,38 0,241 58,6 нет
Венера 0,949 0,82 0,72 0,615   нет
Земля 1,0 1,0 1,0 1,0 1,0  
Марс 0,53 0,11 1,52 1,88 1,03  
Юпитер 11,2   5,20 11,86 0,414  
Сатурн 9,41   9,54 29,46 0,426  
Уран 3,98 14,6 19,22 84,01 0,718  
Нептун 3,81 17,2 30,06 164,79 0,671  

Плуто́н —со своего открытия в 1930 и до 2006 года Плутон считался девятой планетой Солнечной системы. Однако в конце XX и начале XXI веков во внешней части Солнечной системы было открыто множество объектов. Среди них примечательны Квавар, Седна и особенно Эрида, которая на четверть массивнее Плутона (точнее на 27%). 24 августа 2006 года МАС впервые дал определение термину «планета». Плутон не попадал под это определение, и МАС причислил его к новой категории карликовых планет вместе с Эридой и Церерой. После переклассификации Плутон был добавлен к списку малых планет и получил № 134340 по каталогу Центра малых планет. Некоторые учёные продолжают считать, что Плутон должен быть переклассифицирован обратно в планету.

Малые тела Солнечной системы — этот термин введен Международным астрономическим союзом в 2006 году для описания объектов Солнечной системы которые не являются ни планетами, ни карликовыми планетами, ни их спутниками: Все прочие объекты за исключением спутников, вращающиеся вокруг Солнца должны быть отнесены к "Малым телам Солнечной системы"... В настоящее время в этот список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), комет, и прочих малых тел.

Определение касается: всех малых планет; классических астероидов; кентавры и троянцы;

транснептуновые объекты (исключая карликовые планеты); все кометы.

В настоящее время нет ясности касательно включения в будущем определения о нижней границе размеров малых тел Солнечной системы или определение будет касаться любого материала до уровня метеороидов.

Исключениями являются не только крупные тела, имеющие гидростатическое равновесие, естественные спутники (луны) отличаются от малых тел Солнечной системы не размерами, а орбитами. Естественные спутники вращаются не вокруг Солнца, а вокруг других объектов Солнечной системы, таких как планеты, карликовые планеты, и сами малые тела Солнечной системы.

Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.

Орбиты подавляющего большинства малых тел Солнечной системы расположены в двух различных областях, называемых пояс астероидов и пояс Койпера. Эти два пояса имеют свои внутренние структуры, вызванные возмущением больших планет (в частности Юпитера и Нептуна соответственно) и имеют плохо определяемые границы. Другие области Солнечной системы также содержат малые тела, но в гораздо меньшей концентрации. Они включают в себя околоземные астероиды, кентавры (астероиды), кометы, объекты рассеянного диска.

Наименьшие макроскопические тела, имеющие орбиты вокруг Солнца, называются метеороиды. (Есть ещё более мелкие объекты, такие как межпланетная пыль, частицы солнечного ветра и свободные атомы водорода). определение околоземного объекта относит объекты до 50 м в диаметре в категорию метеороидов. Королевское астрономическое общество выдвинуло на рассмотрение новое определение, по которому метеороиды имеют диаметр от 0,1 мм до 10 м. Более мелкие частицы будут относится к межпланетной пыли, молекулам газа и отдельным атомам.

43. Земля как планета Солнечной системы, её качественная и количественная характеристика.

В настоящее время Земля является объектом изучения многих наук — от геологии и географии до экономики и политологии. В совокупности этих наук выделяются отраслевые науки, изучающие отдельные части вертикальной и горизонтальной структуры Земли (геология, климатология, почвоведение и др.), а также системные науки, синтезирующие в себе всю совокупность знаний о Земле для решения теоретических или прикладных проблем (география, физическая география, социально-экономическая география и др.).

Долгое время, пока господствовала мифологическая картина мира, Земля считалась плоским диском, стоящим на грех слонах, китах или черепахе и покрытым сверху полукруглым небесным сводом. Лишь в VI в. до н.э. один из основоположников античной науки Пифагор высказал мысль о шарообразности Земли. То, что Земля имеет шарообразную форму, доказал Аристотель в IV в. до н.э. Кроме того, было известно, что в южных странах на небе появляются созвездия, невидимые на севере. Так, постепенно утвердилось представление о том, что Земля — это шар, неподвижно висящий в центре Космоса без всякой опоры, а вокруг него вращаются по идеальным круговым орбитам Луна, Солнце и пять известных тогда планет. Неподвижные звезды замыкали сложившуюся в античности геоцентрическую модель мира.

В 300 г. до н.э. географ Эратосфен достаточно точно определил размеры земного шара. Тем не менее, представления о шарообразности Земли во многом вытекали из чисто умозрительных рассуждений об идеальных телах. В античности такими телами считались шар, сфера, круг, а потому в гармоничном соразмерном Космосе Земля должна иметь форму самой совершенной фигуры — шара. Ничем другим она просто не могла быть.

Лишь с началом эпохи Великих географических открытий шарообразность Земли была подтверждена на опыте. В 1522 г. португальский мореплаватель Фернан Магеллан завершил первое кругосветное путешествие, в ходе которого он обогнул Землю и доказал наличие единого Мирового океана.

С тех пор форма Земли уточнялась еще несколько раз. С большой точностью ее удалось определить лишь в XX в. с помощью приборов, установленных на искусственных спутниках Земли. Сегодня точно известно, что Земля — не вполне правильный шар. Она немного сжата у полюсов и несколько вытянута к Северному полюсу. Эта фигура называется геоидом.

Окружность Земли по экватору равна 40 075,7 км, окружность по меридиану — 40 008,5 км.

Масса Земли была вычислена на основе закона всемирного тяготения в опытах Г. Кавендиша с крутильными весами, на которых он измерял, с какой силой большой свинцовый шар притягивает к себе маленькие свинцовые шарики, а затем сравнивал эту силу с силой притяжения маленьких шариков Землей, т.е. с их весом. Этот опыт был поставлен в 1798 г. Масса Земли оказалась равной 5976 • 1021 кг.

Поверхность Земли составляет приблизительно 510 млн. км2, при этом на долю суши приходится 149 млн. км2, или около 29%, так что правильнее было бы назвать нашу планету не Землей, а Океаном.

В состав Солнечной системы входит девять (с 2006 г ─ 8) планет. Они делятся на д в е группы:

1) внутренние планеты (планеты земной группы) — Меркурий, Венера, Земля, Марс;

2) внешние планеты (газовые гиганты) — Юпитер, Сатурн, Уран, Нептун, Плутон.

Отличия планет земной группы от газовых гигантов очевидны. Среди них нет двух одинаковых планет. Они отличны по размерам, физико-химическим параметрам, строению недр и поверхностей, составом атмосфер. В основном эти различия обусловлены начальными условиями формирования планет — химическим составом, плотностью вещества в тех частях протопланетного облака, где эти планеты формировались, а также расстоянием от Солнца, резонансным взаимодействием с ним и другими планетами.

Из всех планет земной группы Земля — самая большая планета. Но как показывают оценки, даже такие размеры и масса оказываются минимальными, при которых планета способна удержать свою газовую атмосферу. Тем не менее, Земля теряет водород и другие легкие газы, что заметно по шлейфу, который тянется за нашей планетой. У остальных двух планет атмосфера либо вообще отсутствует (Меркурий), либо сохранилась в очень разреженном состоянии (Марс).

Из всех планет только Земля обладает сильным магнитным полем, на два порядка превосходящим значения магнитных полей у других планет. Как считают ученые, это одна из причин появления жизни на Земле.

Луна — спутник Земли, не вписывается ни в одну из современных гипотез образования Солнечной системы. Тем более, что Луна имеет планетные размеры (сравнимые с размерами Меркурия).

Важнейшей характеристикой любой планеты является наличие (или отсутствие) атмосферы. Три из четырех планет обладают заметной атмосферой. Атмосфера Земли кардинально отличается от атмосфер других планет: в ней мало углекислого газа, много молекулярного кислорода и паров воды. Это связано с тем, что вода морей и океанов Земли хорошо поглощает углекислый газ, а живое вещество биосферы планеты насыщает атмосферу кислородом, образующимся в процессе фотосинтеза. Подсчеты показывают, что если освободить всю поглощенную водой океанов углекислоту и одновременно убрать из атмосферы кислород, накопленный за счет жизнедеятельности растений, то состав земной атмосферы станет подобным составу атмосфер Венеры и Марса.

На Земле гидросфера развита настолько хорошо, что существует в виде Мирового океана, занимающего большую часть поверхности нашей планеты.

44. Спутник Земли – Луна, её происхождение и общая характеристика.

Истории Луны интересна не только сама по себе, но и как часть общей проблемы происхождения Земли и других планет Солнечной системы. В последнее время мы много узнали о физических и химических характеристиках Луны. Эти данные получены не только с Земли, но и с помощью космических аппаратов, которые дали возможность детально измерить их химические и физические характеристики и установить по ним возраст Луны.

Полученные данные позволяют узнать многое об истории Луны, но вопрос о ее происхождении все равно остается трудным. Существует несколько теорий возникновения Луны. Согласно одной из них, Луна – это часть Земли, некогда оторвавшаяся от нее. Другая теория рассматривает Землю и Луну как двойную планету, сформировавшуюся при аккумуляции одного и того же вещества в пространстве. Третья теория утверждает, что Луна сформировалась независимо и затем была захвачена Землей.

Крупные детали на поверхности Луны образовались в основном вследствие метеоритной бомбардировки. Только темные моря наверняка связаны с вулканической деятельностью, с извержением богатой железом базальтовой лавы.

Кратеры на поверхности вызваны падением метеоритов. Определение возраста лунных пород радиоизотопным методом показало, что некоторые образцы, доставленные «Аполлоном-17», имеют возраст 4,6 млрд. лет, т.е. почти тот же возраст, что и сама Луна. Однако большая часть материковых пород моложе примерно на 700 млн. лет. Это указывает, что активная бомбардировка Луны закончилась 3,9 млрд. лет назад, оставив после себя огромные круглые воронки, такие как Море Дождей и Море Восточное. Морской базальт еще моложе: от 3,9 до чуть более 3,0 млрд. лет. Однако анализ изотопов четко показывает, что разделение химических элементов в недрах Луны произошло 4,3 млрд. лет назад. Примерно в это время сформировались истоковые области основных лунных пород.

По окончании извержения последней морской лавы (вероятно, в Море Дождей) самым значительным событием в истории Луны было образование кратеров, таких, как Коперник (850 млн. лет назад) и постепенное нарастание толстого пылевого слоя – лунного реголита – под действием ударов мелких метеоритов и ионизующего облучения.

Поскольку лунные детали не сильно изменились за время существования Солнечной системы, по ним можно судить о самых ранних эпизодах в истории системы Земля – Луна. Тот факт, что большинство лунных кратеров гораздо старше самых древних земных пород, помогает понять, почему на Земле мы не встречаем крупных ударных бассейнов: обладая более мощным гравитационным полем, Земля в первые 700 млн. лет существования Солнечной системы должна была подвергаться более интенсивной бомбардировке, чем Луна, но активные геологические процессы на Земле уничтожили все свидетельства той бомбардировки.

Различные данные позволяют заключить, что Луна значительно более жесткий объект, чем Земля, а значит, температура в недрах Луны была относительно невысокой. Изучение орбиты Луны и ее либраций показало, что фигура Луны представляет собой трехосный эллипсоид. Эта форма не соответствует той, которую должна была бы принять Луна под действием собственной силы тяжести, гравитационного поля Земли и центробежных сил, вызванных вращением Луны. Для поддержания этой неправильной формы требуется, чтобы Луна была жесткой, по крайней мере в своих внешних слоях.

Средняя плотность Луны 3,34 г/см3. Это близко к плотности метеоритов хондритов, т.е. солнечного вещества, за исключением наиболее летучих его компонентов, таких, как водород и углерод. Плотность Луны близка и к плотности земной мантии; по крайней мере, это не противоречит гипотезе о том, что Луна некогда оторвалась от Земли. Значительно более высокая средняя плотность Земли (5,5 г/см3) в основном обусловлена плотным железным ядром

Луна – весьма необычный спутник. Только Харон – спутник Плутона, открытый в 1978, еще более массивен по отношению к своей планете.Луна гораздо ближе к Земле, чем другие небесные тела. Расстояние до Луны измерили точно, воспользовавшись тем же способом, каким на Земле измеряют расстояние до видимых предметов, к которым нельзя подойти.

Луна движется вокруг Земли не по окружности, а по эллипсу, поэтому ее расстояние от Земли не остается постоянным. В среднем оно составляет 384400 км.

Зная расстояние до Луны, ученые вычислили ее действительные размеры. Диаметр Луны составляет 3476 км, т. е. немногим более четверти диаметра Земли. Площадь Луны несколько меньше территории Азии. По объему Луна почти в 50 раз меньше Земли

При рассмотрении Луны в бинокль или даже невооруженным глазом на ее поверхности видны темные пятна и всегда почти на одних и тех же местах, одинаково удаленных от краев лунного диска. Значит, Луна обращена к Земле постоянно одной и той же стороной. Это происходит потому, что Луна вращается вокруг своей оси как раз с тем же периодом, с каким она обращается вокруг Земли. Сделайте такой опыт: обойдите вокруг стола, оставаясь обращенными к нему все время лицом. Вы по очереди увидите все стены комнаты. Результат будет тот же, как если бы вы сделали полный поворот вокруг себя, стоя на месте.
Вследствие вращения Луны вокруг своей оси разные участки ее поверхности бывают обращены к Солнцу в разное время. На ней происходит смена дня и ночи. Лунные сутки в 29.5 раза длиннее земных. Почти 15 наших суток на Луне длится день и столько же времени - ночь.







Дата добавления: 2015-04-19; просмотров: 852. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия