Студопедия — Физика, химия и техника 4 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физика, химия и техника 4 страница






 

4.97. Во сколько раз освещенность, создаваемая ночью полной Луной, больше освещенности, создаваемой безоблачным ночным небом (без Луны)?

Освещенность ночью при полной Луне в зените составляет 0,25 люкса, а освещенность, создаваемая безоблачным ночным небом (звездами) в безлунную ночь, равна 0,0003 люкса.

Таким образом, в безоблачную ночь Луна ярче звезд более чем в 800 раз.

 

4.98. Во сколько раз Солнце ярче освещает Землю летом, чем зимой?

Освещенность, создаваемая солнечным светом в средних широтах Земли летом, составляет величину порядка 100 тысяч люксов, зимой – величину порядка 10 тысяч люксов. Таким образом, освещенность, создаваемая солнечным светом летом, больше освещенности, создаваемой солнечным светом зимой, на порядок, то есть приблизительно в 10 раз.

 

4.99. Во сколько раз освещенность, создаваемая солнечным светом, больше освещенности при полной Луне ночью?

Освещенность, создаваемая солнечным светом, больше освещенности при полной Луне ночью на поверхности нашей планеты в 40—400 тысяч раз (в зависимости от времени года), а вне земной атмосферы – в 540 тысяч раз.

 

4.100. Кто лучше исполняет роль ночного светила: Луна в отношении Земли или Земля в отношении Луны?

Освещенность, создаваемая полной Луной в зените на поверхности Земли, составляет 0,25 люкса, а освещенность, обеспечиваемая Землей на Луне в полнолуние, равна 15 люксам. Таким образом, с ролью ночного светила Земля справляется в 60 раз лучше, чем Луна.

 

4.101. Что такое поляризованный свет?

Свет, излученный Солнцем или обыкновенной электрической лампой, состоит из электромагнитных волн, совершающих колебания во всех возможных направлениях вокруг светового луча. Из этих неупорядоченных колебаний можно «вырезать» волну с одним-единственным направлением колебаний в одной плоскости. Такой свет называется плоско-поляризованным. Поляризация происходит при прохождении света сквозь некоторые кристаллы (турмалин, исландский шпат) и тонкие пленки из синтетических материалов. Свет, прошедший через такой поляризатор, на взгляд ничем не отличается от обычного. Но если на пути поляризованного луча поместить второй кристалл или кусок пленки – анализатор, – обнаружатся его особые свойства. При повороте анализатора вокруг оси, совпадающей с направлением луча, проходящий свет периодически пропадает. Это происходит в тот момент, когда поляризаторы «скрещены» – пропускают колебания во взаимно перпендикулярных направлениях. Если же между скрещенными поляроидами поместить несколько листочков целлофана или полоску прозрачной пластмассы, станут видны разноцветные полосы, покрывающие всю поверхность. Явление поляризации света открыл в 1699 году датчанин Эразм Бартолин (1635–1698), экспериментировавший с кристаллом исландского шпата. Сам термин «поляризация света» ввел французский военный инженер Этьенн Малюс (1775–1812). В 1808 году он обнаружил, что свет, отраженный от поверхности воды или стекла, поляризуется так же, как при прохождении сквозь исландский шпат. В 1811 году Малюс открыл поляризацию света при преломлении. В 1815 году шотландский физик Дэвид Брюстер (1781–1868) открыл замечательный закон, названный его именем. Закон гласит, что свет полностью поляризуется, если падает на поверхность вещества под углом, тангенс которого равен показателю преломления вещества. При этом преломленный луч пойдет перпендикулярно отраженному и будет максимально (но не полностью) поляризован. Если же свет пропустить через стопку стеклянных пластин, степень поляризации будет возрастать пропорционально числу поверхностей. На практике бывает достаточно 7–8 пластинок, чтобы получить полностью поляризованный свет. Важно, что поляризация происходит только при отражении от диэлектрика, изолятора. Отражение от металла (например, покрывающего зеркала) происходит по другим законам и свет не поляризует.

 

4.102. Что представляет собой радуга?

Радугой мы называем оптическое явление в атмосфере, имеющее вид разноцветной дуги на небесном своде. Наблюдается радуга в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба. Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск и глаз наблюдателя, то есть в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 42 градуса. Последовательность цветов в радуге такая же, как в солнечном спектре, причем обычно по наружному краю располагается красный цвет, по внутреннему – фиолетовый. Со стороны внутреннего края иногда бывают видны вторичные цветовые дуги, примыкающие к главной радуге. Видимая часть дуги определяется положением Солнца: когда оно на горизонте, радуга имеет вид полукруга, с повышением Солнца видимая часть дуги уменьшается, и при высоте Солнца в 42 градуса радуга исчезает. Явление, подобное радуге, можно наблюдать в брызгах фонтанов, водопадов. Возможно появление лунной радуги и радуги от искусственных источников света. Нередко наблюдается вторая радуга с угловым радиусом около 52 градусов и обратным расположением цветов. Радуга с древнейших времен привлекала пристальное внимание человека. В Библии она фигурирует в качестве знамения, данного Богом в знак прощения и примирения с людьми. Английский философ и естествоиспытатель Роджер Бэкон (около 1214–1292) тщательно рассмотрел явление радуги в главном своем сочинении «Большой труд». Он полагал, что цвета радуги представляют собой субъективное явление, вызванное влажностью глаза. Первую теорию радуги дал в 1637 году французский философ и математик Рене Декарт (1596–1650). Более точную теорию разработал в 1836 году английский астроном Джордж Эри (1801–1892). Его теория основана на расчете явлений дифракции и интерференции, сопровождающих встречу солнечных лучей с решеткой, образуемой дождевыми каплями.

 

4.103. Как запомнить последовательность цветов в спектре солнечного света?

Для этой цели кто-то когда-то придумал очень простую и легко запоминающуюся фразу. В ней каждое слово начинается с той же буквы, что и название соответствующего цвета, а последовательность начальных букв в точности повторяет последовательность цветов в спектре солнечного света: Каждый (К – красный цвет) охотник (О – оранжевый) желает (Ж – желтый) знать (З – зеленый), где (Г – голубой) сидит (С – синий) фазан (Ф – фиолетовый).

 

4.104. Как впервые обнаружена конечность скорости распространения света?

В 1672 году директор Парижской обсерватории Жан Доминик Кассини (1625–1712), исследуя спутники Юпитера, заметил определенные запаздывания в моментах вхождения одного из них – Ио – в конус тени планеты и выхода из нее, как если бы время обращения спутника вокруг Юпитера было больше, когда он находится дальше от Земли. Это явление никто не мог объяснить, пока его исследованием не занялся датский астроном Олаф Рёмер (1644–1710), который пришел к выводу, что наблюдаемую аномалию движения Ио следует приписать конечности скорости распространения света. В сентябре 1676 года Рёмер предсказал отставание, которое должно наблюдаться при предстоящем затмении Ио в ноябре. Убедившись в правильности прогноза, он представил свою теорию Парижской академии наук, где она встретила сильное сопротивление. Даже Кассини, который сам принимал участие в наблюдениях, снял с себя ответственность за выводы Рёмера. Окончательно подтвердил теорию Рёмера английский астроном Джеймс Бредли (1693–1762), когда он, пытаясь определить параллакс некоторых звезд, в 1725 году обнаружил, что в своей кульминации они кажутся отклоненными к югу. Наблюдения, продолжавшиеся до 1728 года, показали, что в течение года эти звезды как бы описывают эллипс. Бредли интерпретировал это явление как результат сложения скорости света, идущего от звезды, со скоростью орбитального движения Земли. Хотя земные измерения скорости света были проведены лишь в следующем столетии, после Бредли конечность скорости распространения света была единодушно принята как опытный факт.

4.105. Как велика скорость света в вакууме?

Скорость распространения электромагнитных волн (в том числе световых) в свободном пространстве (вакууме) является одной из фундаментальных физических постоянных. Ее огромная роль в современной физике определяется тем, что скорость света представляет собой предельную скорость распространения любых физических воздействий и не изменяется при переходе от одной системы отсчета к другой. Никакие сигналы не могут быть переданы со скоростью, большей скорости света. Величина скорости света связывает массу и полную энергию материального тела; через нее выражаются преобразования координат, скоростей и времени при изменении системы отсчета; она входит во многие другие соотношения. По современным данным, скорость света в вакууме равна 299 792 458 метрам в секунду.

 

4.106. Какие цвета называют дополнительными?

Дополнительными называют такие цвета, которые при смешении (сложении) составляющих их излучений образуют цвет, воспринимаемый глазом как белый. Излучения, составляющие дополнительные цвета, могут иметь самые различные спектральные составы – от монохроматических до излучений со сплошным спектром. Чтобы получить два пучка света (со сплошным спектром), отвечающих дополнительным цветам, достаточно пропустить пучок белого света (например, солнечного) через непоглощающее светоделительное зеркало, которое сильно отражает одну часть спектра и пропускает другую часть спектра, которая будет иметь дополнительный к первой цвет. В качестве примера дополнительных цветов можно привести следующие: для красного – синевато-зеленый, для оранжево-красного – голубовато-зеленый, для желтого – синий, для зелено-желтого – фиолетовый.

 

4.107. В чем сущность оптического эффекта под названием «зеленый луч»?

Зеленым лучом называют вспышку зеленого света над диском Солнца при его заходе, наблюдаемую в течение нескольких секунд, когда верхний край солнечного диска исчезает за горизонтом. Происхождение зеленого луча связано с рефракцией солнечных лучей в атмосфере. Поскольку атмосфера в нижних слоях плотнее, чем в верхних, лучи света, проходя через нее, искривляются и разлагаются на основные цвета, так как преломление красных лучей несколько меньше, чем зеленых и голубых; при этом угол преломления лучей увеличивается по мере приближения светила к горизонту. При спокойном состоянии атмосферы «растягивание» спектра от верхнего (фиолетового) до нижнего (красного) края достигает 30 угловых секунд. На длинном пути солнечных лучей сквозь нижние слои атмосферы большая часть желтых и оранжевых лучей поглощается водяным паром и молекулами кислорода, фиолетовые и голубые значительно ослабляются вследствие рассеяния, так что остаются главным образом зеленые и красные лучи. Это приводит к тому, что видны два солнечных диска, зеленый и красный, в большей части, но не полностью перекрывающие друг друга. Поэтому в последний момент перед полным исчезновением солнечного диска, когда его красное изображение оказывается под горизонтом, короткое время виден верхний край зеленого изображения. Зеленый луч наблюдается лишь при очень прозрачном воздухе, чаще всего на морском горизонте. Иногда, если воздух очень чист, виден и голубой луч. Зеленый луч может возникать и при восходе Солнца.

 

4.108. Кто изобрел зрительную трубу?

В 1608 году один из учеников Ганса Липперши, голландского мастера по изготовлению очков, развлекаясь в свободное от работы время, стал рассматривать предметы через две линзы, расположенные одна за другой. Он очень удивился, обнаружив, что предметы, находившиеся на некотором расстоянии, выглядели так, будто были у него на ладони. Ученик рассказал об этом хозяину, и Липперши изготовил первую зрительную трубу, поместив в трубке на соответствующем расстоянии друг от друга две линзы. Принц Мауриций Нассау, командовавший голландскими вооруженными силами, понял, что этот инструмент можно применять в военных целях, и приказал держать его в секрете. Однако слухи об изобретении приспособления, позволяющего хорошо рассмотреть отдаленный предметы, все же распространились. Среди тех, до кого дошли эти слухи, был великий физик, механик и астроном Галилео Галилей. Зная лишь то, что в загадочном приспособлении используются линзы, Галилей сумел самостоятельно разобраться в принципе его действия. В 1609 году он собственноручно собрал свою зрительную трубу, значительно более совершенную, чем изготовленная Липперши. Проведя с помощью зрительной трубы множество наблюдений земных объектов в самых разнообразных условиях и убедившись в достоверности получаемой с ее помощью информации, Галилей обратил ее к небу и тем самым превратил зрительную трубу в телескоп – важнейший инструмент науки нового времени.

 

4.109. Во сколько раз температура термоядерной реакции выше температуры видимой поверхности Солнца?

Температура видимой поверхности Солнца составляет величину около 6 тысяч градусов Кельвина. В центре Солнца, где протекает термоядерная реакция (превращение ядер водорода в гелий), температура, по современным представлениям, достигает величин около 15 миллионов градусов. Таким образом, температура термоядерной реакции выше температуры видимой поверхности Солнца приблизительно в 2,5 тысячи раз.

 

4.110. Сколько «элементарных» частиц известно в настоящее время?

Элементарными частицами называют мельчайшие частицы физической материи. Представления об элементарных частицах отражают ту степень в познании строения материи, которая достигнута современной наукой. Характерной особенностью элементарных частиц является их способность к взаимным превращениям – это не позволяет рассматривать элементарные частицы как простейшие, неизменные «кирпичики мироздания», подобные атомам Демокрита. Число частиц, которые называются в современной теории элементарными, очень велико. Каждая элементарная частица (за исключением истинно нейтральных частиц) имеет свою античастицу. Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются за время от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды, выражаемой дробью с единицей в числителе и единицей с 22–24 нулями в знаменателе (для резонансов). Рассказывают, что когда некий студент спросил Энрико Ферми о названии какой-то элементарной частицы, великий физик ответил: «Молодой человек, если бы я мог запомнить названия всех этих частиц, я бы стал ботаником».

 

4.111. Что такое антимир?

Антимиром называют гипотетический космический объект (типа звезды или галактики), состоящий из антивещества – материи, построенной из античастиц. Ядра атомов антивещества состоят из антипротонов и антинейтронов, а атомные оболочки построены из позитронов. Гипотезу о существовании антивещества и антимиров впервые высказал в 1933 году английский физик Поль Дирак (1902–1984). До настоящего времени она не подтверждена и не опровергнута наблюдениями – скопления антивещества во Вселенной пока не обнаружены. Но на ускорителях заряженных частиц получены ядра антидейтерия и антигелия.

 

4.112. Что такое аннигиляция?

В физике термин «аннигиляция», буквально означающий «исчезновение», «уничтожение» (лат. annihilatio, от ad – к и nihil – ничто), принят для наименования одного из видов превращений элементарных частиц, происходящего при столкновении частицы с античастицей. При аннигиляции частица и отвечающая ей античастица превращаются в электромагнитное излучение – фотоны или в другие частицы – кванты физического поля иной природы. Обратным по отношению к аннигиляции процессом является рождение пары, когда в результате взаимодействия электромагнитных или других полей одновременно возникают частица и античастица. При соударении электрона и его античастицы – позитрона – оба они могут исчезнуть, образовав два фотона (гамма-кванта). Столкновение протона и антипротона может привести к их взаимоуничтожению, которое сопровождается одновременным появлением нескольких гораздо более легких частиц, квантов ядерного поля – пимезонов. Гамма-квант, если он обладает достаточно большой энергией, может, взаимодействуя с электрическим полем атомного ядра, породить пару электрон – позитрон. Таким образом, речь идет не об уничтожении или самопроизвольном возникновении материи, а лишь о взаимопревращениях частиц. Эти взаимопревращения управляются фундаментальными законами сохранения, такими как законы сохранения энергии и количества движения (импульса), момента количества движения, электрического заряда и др.

 

4.113. Каким считали атом до Резерфорда?

К началу ХХ века было известно, что атомы состоят из частей (электрон был открыт в 1897 году), но никто не знал, как много этих частей, как они «стыкуются» в атоме и какую форму имеет атом. Некоторые физики полагали, что атомы должны быть кубической формы, поскольку именно она обеспечивает наиболее плотную «упаковку», без ненужных затрат пространства. Однако наиболее распространенным мнением было то, что атом напоминает булочку с изюмом – плотный твердый объект, несущий положительный заряд и утыканный отрицательно заряженными электронами-изюминами.

 

4.114. Какая часть объема атома приходится на его ядро?

Размер атома определяется радиусом наиболее удаленной от ядра электронной орбиты, порядок величины этого радиуса в метрах выражается дробью с единицей в числителе и единицей с 10 нулями в знаменателе. Порядок величины радиуса атомного ядра в метрах выражается дробью с единицей в числителе и единицей с 14–15 нулями в знаменателе. Таким образом, радиус атомного ядра на 4–5 порядков (в 10 000–100 000 раз) меньше радиуса атома. Отсюда следует, что объем атомного ядра меньше объема, занимаемого атомом, на 12–15 порядков величины, то есть в триллион – квадриллион раз.

 

4.115. Как велика плотность атомного ядра?

В ядре сконцентрирована почти вся масса атома, а поскольку объем атомного ядра ничтожно мал по сравнению с объемом самого атома, плотность атомного ядра огромна: она составляет 200 квадриллионов килограммов на кубический метр (квадриллион – число, изображаемое единицей с 15 нулями). Один кубический миллиметр ядерного вещества на поверхности Земли весил бы 200 тысяч тонн.

 

4.116. Как долговечны атомы?

Атомы практически вечны. Согласно некоторым оценкам, продолжительность их существования, выраженная в годах, изображается единицей с 35 нулями – сто триллионов секстиллионов.

 

4.117. Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла?

Энергия, выделяемая при распаде одного ядра урана, составляет величину порядка 10 триллионных джоуля, а затрачиваемая комаром на один взмах крыла – величину порядка 1 десятимиллионной джоуля. Таким образом, энергия одного взмаха комариного крыла равна энергии, выделяемой при распаде приблизительно 10 тысяч ядер урана!

 

4.118. Что такое период полураспада?

Периодом полураспада называют промежуток времени, в течение которого количество радиоактивных ядер в среднем уменьшается вдвое. Величина периода полураспада различных изотопов может составлять несколько минут, других – многие миллионы и даже миллиарды лет. Так, например, период полураспада кислорода-15 составляет 124 секунды, азота-13 – 10 минут, брома-82 – 35,5 часа, фосфора-32 – 14,3 суток, цинка-65– 246 суток, прометия-147 – 2,5 года, радия-226 – 1601 год, урана 234–250 тысяч лет, урана-235 – 710 миллионов лет, урана-238 – 4,5 миллиарда лет.

 

4.119. Что представляет собой полярное сияние?

Полярное сияние – одно из наиболее впечатляющих небесных явлений, красочное свечение, появляющееся в ночном небе. Его формы и цвета быстро меняются. Полярные сияния происходят в интервалах высот 90—100 и 400—1000 километров. Наблюдать их можно главным образом в высоких широтах, то есть в полярных областях. Полярное сияние принимает обычно дугообразную или лентообразную форму шириной в десятки километров, а в длину – даже до тысячи километров. Его лучи ориентированы по линиям магнитного поля Земли. Реже полярное сияние имеет форму паруса, закрывающего широкие зоны неба. Причиной полярного сияния является взаимодействие атомов верхних слоев атмосферы с заряженными частицами больших энергий (электронами и протонами), вторгающимися в земную атмосферу из космоса. Испускаемые Солнцем заряженные частицы увлекаются магнитным полем Земли и стягиваются к полюсам. Здесь соударения частиц с нейтральными атомами верхней атмосферы (кислородом и азотом) приводят к возбуждению последних, то есть к переходу в состояние с более высокой энергией. Возврат в начальное, равновесное состояние происходит путем излучения квантов света характерных длин волн, что мы и наблюдаем как полярное сияние. Частота и интенсивность полярных сияний связана с 11-летним солнечным циклом. Чем активнее Солнце, тем выше вероятность их появления, в период спокойного Солнца их почти не бывает. Космический телескоп Хаббла заснял северное сияние на Юпитере. Возникает оно по тем же причинам, что и на Земле.

 

4.120. Как Рентген обнаружил излучение, названное позже его именем?

5 ноября 1895 года немецкий физик Вильгельм Конрад Рентген (1845–1923) проводил эксперимент по изучению люминесценции, вызываемой катодными лучами. Чтобы эффект был нагляднее, он не только поместил электронно-лучевую трубку и люминесцирующее вещество в черный картонный ящик, но даже наглухо зашторил окна в лаборатории. Включив электронно-лучевую трубку, Рентген неожиданно увидел вспышку света в другой половине комнаты. Оказалось, свет исходил от листа бумаги, покрытого платиноцианидом бария – люминесцирующим веществом. Рентген очень удивился: как излучение могло проникнуть сквозь стенки коробки и вызвать свечение бумаги? Он выключил электронно-лучевую трубку – свечение исчезло. Опять включил трубку – свечение появилось снова. Рентген перенес бумагу в другую комнату – она продолжала светиться. Ученому стало ясно, что в электронно-лучевой трубке возникает некая форма излучения, способного проникать не только сквозь картон, но и сквозь стены. У Рентгена не было никаких идей относительно природы этих лучей, поэтому он назвал их икс-лучами (Х-лучами). Уже другие ученые стали называть их рентгеновскими. За открытие этих лучей Рентгену в 1901 году была присуждена Нобелевская премия по физике.

 

4.121. Сколько термоядерной энергии можно получить из литра обыкновенной воды?

В литре обычной воды содержится примерно 0,03 грамма изотопа водорода – дейтерия. Выделив его из воды и использовав в качестве горючего для термоядерной реакции, можно получить столько же энергии, сколько дает сжигание 300 литров бензина. Запасов дейтерия на Земле хватит, чтобы обеспечивать человечество энергией на протяжении около миллиарда лет. Осталось только решить проблему управляемого термоядерного синтеза.

 

4.122. Что такое тротиловый эквивалент?

Тротиловый эквивалент – энергетическая характеристика взрыва ядерного или термоядерного заряда. Количественно тротиловый эквивалент равен массе условного заряда химического взрывчатого вещества тринитротолуола (тротила), энергия взрывчатого разложения которого равна энергии, выделяемой при данном ядерном взрыве. Измеряется тротиловый эквивалент в килотоннах (тысячах тонн) и мегатоннах (миллионах тонн). Ядерный взрыв одного килограмма урана-235 или плутония-239 при полном делении всех ядер эквивалентен по количеству выделившейся энергии химическому взрыву 20 тысяч тонн тринитротолуола.

 

4.123. Какой радиационный фон называют естественным?

Радиационным фоном называют ионизирующее излучение, обусловленное совместным действием природных (естественных) и техногенных радиационных факторов. Естественный радиационный фон – это излучение, создаваемое рассеянными в природе радионуклидами, содержащимися в земной коре, приземном воздухе, почве, воде, растениях, продуктах питания и организмах животных и человека (84 процента), а также космическое излучение (16 процентов). Естественный радиационный фон в различных регионах Земли колеблется в широких пределах. Эквивалентная доза в организме человека составляет в среднем 0,2 бэр. Техногенный радиационный фон связан главным образом с переработкой и перемещением горных пород, сжиганием каменного угля, нефти, газа и других горючих ископаемых, а также с испытаниями ядерного оружия и ядерной энергетикой.

 

4.124. С каким ускорением движется электрон в кинескопе телевизора?

Ускорение электрона в электронной пушке электронно-лучевого прибора (например, телевизионного кинескопа) составляет величину порядка квадриллиона (единица с 15 нулями) метров на секунду в квадрате. Это приблизительно в 100 триллионов раз больше, чем ускорение свободно падающего вблизи земной поверхности тела, и в 200 миллиардов раз больше, чем ускорение снаряда в стволе артиллерийского орудия.

 

4.125. Сколько в мире атомных электростанций?

На начало 2002 года атомные электростанции имела 31 страна мира, общее число реакторов на них – 446. В США действует 109 энергоблоков, во Франции – 56, в Японии – 51, в Великобритании – 35, в России – 29, в Канаде – 21, в Германии – 20, на Украине – 16. Количество атомных электростанций быстро возрастает: один только Китай планирует в ближайшие 17 лет построить 30 энергетических атомных реакторов.

 

4.126. Почему власти США регулярно предупреждали фирму «Кодак» о готовящихся ядерных испытаниях?

В начале 1998 года из рассекреченных бумаг правительства США стало известно, что в 1950-х годах власти регулярно предупреждали фирму «Кодак» и других производителей светочувствительных материалов о готовящихся ядерных испытаниях, чтобы выпадающие радиоактивные осадки не засвечивали продукцию фирм. Особый интерес этому сообщению придает тот факт, что из выпадающих радионуклидов наиболее опасным для фотоматериалов считается йод-131, одновременно опасный и для человека: он вызывает рак щитовидной железы. По оценкам врачей, с 1951 по 1958 год из-за ядерных испытаний в США возникло от 10 до 75 тысяч «лишних» случаев рака щитовидной железы. Но население о взрывах не предупреждали. А «Кодак» вовремя заметил помутнение на своих пленках и пригрозил подать в суд на правительство.

 

4.127. Как велик рекорд мощности ядерных испытаний?

Испытания самого мощного в истории ядерного боеприпаса проведены в СССР (на Новой Земле) в 1961 году. Мощность взрыва в тротиловом эквиваленте составила 50 мегатонн.

 

4.128. Что такое баррель и какой он бывает?

Словом «баррель» (англ. barrel – бочка) в наше время обозначают меру вместимости и объема, применяемую в США, Великобритании и ряде других стран, использующих английскую систему мер. В США различают баррель сухой, равный 115,628 литра, и баррель нефтяной, равный 158,988 литра.

Английский баррель (мера вместимости для сыпучих веществ) равен 163,65 литра.

 

4.129. Когда в России введена метрическая система мер?

Метрической, или десятичной, системой мер называют совокупность единиц физических величин, в основу которой положена единица длины – метр. Эта система разработана во Франции в период революции 1789–1794 годов. По предложению комиссии из крупнейших французских ученых за единицу длины – метр – была принята одна десятимиллионная часть четверти длины Парижского меридиана. Это решение было обусловлено стремлением положить в основу метрической системы мер легко воспроизводимую «естественную» единицу длины, связанную с практически неизменным объектом природы. Декрет о введении метрической системы мер во Франции был принят 7 апреля 1795 года. В 1799 году изготовили и утвердили платиновый прототип метра. Размеры, наименования и определения других единиц метрической системы мер были выбраны так, чтобы она не носила национального характера и могла применяться во всех странах. Подлинно международный характер метрическая система мер приобрела в 1875 году, когда 17 стран, в том числе Россия, подписали Метрическую конвенцию для обеспечения международного единства и усовершенствования метрической системы. Метрическая система мер была допущена к применению в России (в необязательном порядке) законом от 4 июня 1899 года, проект которого разработал Д. И. Менделеев. Введена она в качестве обязательной декретом СНК РСФСР от 14 сентября 1918 года, а для СССР – постановлением СНК СССР от 21 июля 1925 года.

 

4.130. Что такое Международная система единиц (СИ)?







Дата добавления: 2015-04-19; просмотров: 515. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия