Студопедия — СТРОЕНИЕ МЫШЦЫ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СТРОЕНИЕ МЫШЦЫ






Структурно функциональной единицей скелетной мышцы является симпласт или мышечное волокно – огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (в дальнейшем под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект). Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. Мышечное волокно, как и любая клетка, окружено оболочкой – сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна. Группы мышечных волокон образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани, переходящей на концах мышцы в сухожилия, крепящиеся к кости.

2. Генеративныемутации.

Изменения наследственной программы половых клеток человека приводят к рождению потомства с различными наследственно обусловленными болезнями, в зависимости от ранга мутаций — генными или хромосомными.

Различные генные мутации по-разному сказываются на жизнеспособности организма, причем в случае их рецессивности они могут долго не проявляться фенотипически у потомков. Хромосомные перестройки и геномные мутации приводят к выраженным отклонениям в развитии и часто являются причиной гибели организма на разных стадиях его онтогенеза, обычно в раннем эмбриогенезе. В значительной степени именно этими мутациями определяется высокий процент (15%) прерывания диагностированных беременностей.

Триплоидии плода, как правило, приводят к прерыванию беременности на ранних стадиях, однако описано очень небольшое число случаев живорождения триплоидов. Анэуплоидия по разным хромосомам встречается как в материале абортусов, так и у рожденных детей. Некоторые анэуплоидий несовместимы с жизнью. Так, трисомия по 16-й хромосоме обнаруживается только в материале абортусов. В то же время у человека известны синдромы, связанные с аномалиями числа хромосом, характеризующиеся разной степенью жизнеспособности.

Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный три-сомией по 21-й хромосоме, встречающийся с частотой 1—2 на 1000 (рис. 4.3). Примерно в 60% случаев трисомия 21 является причиной гибели плода, около 30% родившихся умирает на первом году жизни. Еще 46% не переживает Злетний рубеж, однако иногда люди с синдромом Дауна доживают до значительного возраста (рис. 4.4), хотя в целом продолжительность их жизни сокращена. Применение эффективных противомикробных препаратов позволяет несколько увеличить продолжительность жизни таких больных. Трисомия 21 может быть результатом случайного нерасхождения гомологичных хромосом в мейозе. Наряду с этим известны случаи регулярной трисомии, связанной с транслокацией 21-й хромосомы на другую —21, 22, 13, 14 или 15-ю хромосому (рис. 4.5).

Среди других аутосомных трисомий известны трисомии по 13-й хромосоме — Синдром Патау (рис. 4.6), а также по 18-й хромосоме — синдром Эдвардса (рис. 4.7), при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития. Применение методов дифференциального окрашивания хромосом позволило открыть три новых синдрома, обусловленных трисомиями по 8, 9 и 22-й хромосомам, при которых также наблюдаются тяжелые комплексные пороки развития (рис. 4.8).

Достаточно часто у человека встречаются анэуплоидии по половым хромосомам (рис. 4.9—4.11). В отличие от анэуплоидии по аутосомам дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдаются нарушения развития половых органов и гормонозависимого роста тела. Реже встречаются пороки развития других систем. Относительно благоприятные последствия увеличения числа Х-хромосом, видимо, связаны с возможностью компенсации дозы соответствующих генов благодаря естественной генетической инактивации этих хромосом, а также мозаичному характеру такой инактивации.

Среди анэуплоидных синдромов по половым хромосомам моносомия Х (ХО) (синдром Шерешевского — Тернера) встречается много реже, чем трисомия X, синдром Клайнфельтера (XXY, XXXY), а также XYY, что указывает на наличие сильного отбора против гамет, не содержащих половых хромосом, или против зигот ХО. Это предположение подтверждается достаточно часто наблюдаемой моносомией Х среди спонтанно абортированных зародышей. В связи с этим допускается, что выжившие зиготы ХО являются результатом не мейотического, а митотического нерасхождения, или утраты Х-хромосомы на ранних стадиях развития (см. рис. 4.9). Моносомии YO у человека не обнаружено.

Из синдромов, связанных со структурными аномалиями хромосом, известен транслокационный синдром Дауна (см. рис. 4.5), при котором число хромосом в кариотипе формально не изменено и равно 46, так как дополнительная 21-я хромосома транслоцирована на одну из акроцентрических хромосом. При транслокации длинного плеча 22-й хромосомы на 9-ю развивается хронический миелолейкоз. При делении короткого плеча 5-й хромосомы развивается синдром кошачьего крика, при котором наблюдаются общее отставание в развитии, низкая масса при рождении, лунообразное лицо с широко расставленными глазами и характерный плач ребенка, напоминающий кошачье мяукание, причиной которого является недоразвитие гортани (рис. 4.12).

3. Фитотоксиканты

химические и природные вещества в рецептурной форме для поражения различных видов растительности. Подразделяются на альгициды (поражение водной растительности), арборициды (древесно-кустарниковой), гербициды, десиканты (вегетирующей), дефолианты и др.

Фитотоксиканты — это загрязняющие атмосферу вещества, вредные для растений. Они поглощаются листьями, оттуда поступают в побега и другие органы растений. Атмосферные осадки способствуют поступлению растворенных фитотокси-кантов в растения.

Фитотоксиканты - химические вещества, вызывающие поражение растительности. Растения, обработанные фитотоксикантами, теряют листву, засыхают и погибают.

 

Биологически активные вещества (БАВ) — химические вещества, необходимые для поддержания жизнедеятельности живых организмов, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определенным группам живых организмов или их клеткам, злокачественным опухолям, избирательно задерживающие или ускоряющие их рост или полностью подавляющие их развитие

В пище находится большинство из них, например: алкалоиды, гормоны и гормоноподобные соединения, витамины, микроэлементы, биогенные амины, нейромедиаторы. Все они обладают фармакологической активностью, а многие служат ближайшими предшественниками сильнодействующих веществ, относящихся к фармакологии. БАВ-микронутриенты применяются для лечебно-профилактических целей в составе биологически активных пищевых добавок

ФИЗИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА

— органические вещества разнообразной химической природы, обладающие активностью в очень малых концентрациях (0,001—0,0001 мкг) и большой специфичностью действия. Часть из них является регуляторами ростовых процессов (ауксины, цитокинины, гиббереллины, пуриновые и пиримидиновые основания, антибиотики

 

 

Схема клинической классификации ядовитых растений представляется в следующем виде.

Растения, вызывающие преимущественно симптомы поражения центральной нервной системы:

растения, вызывающие возбуждение центральной нервной системы;

растения, вызывающие возбуждение центральной нервной системы и одновременно действующие на пищеварительный тракт, сердце и почки;

растения, вызывающие угнетение и паралич центральной нервной системы;

растения, вызывающие угнетение и паралич центральной нервной системы и одновременно действующие на желудочно-кишечный тракт и сердечно-сосудистую систему.

Растения, вызывающие преимущественно симптомы поражения желудочно-кишечного тракта и одновременно действующие на центральную нервную систему и почки.

Растения, вызывающие преимущественно симптомы поражения органов дыхания и пищеварительного тракта (растения, образующие горчичные масла).

Растения, вызывающие преимущественно симптомы поражения сердца.

Растения, вызывающие преимущественно симптомы поражения печени.

Растения, вызывающие аноксемические явления (явления задушения):

растения, образующие (при определенных условиях) синильную кислоту;

растения, образующие (при определенных условиях) низшие окислы азота.

Растения, сенсибилизирующие (повышающие чувствительность) животных к действию солнечного света.

Растения, вызывающие признаки геморрагического диатеза (множественных кровоизлияний).

Растения, вызывающие нарушения половой деятельности животных.

Растения, вызывающие заболевания с характером витаминной недостаточности.

Растения, вызывающие симптомы нарушения солевого обмена.

Растения, причиняющие механические повреждения.

Отравления водорослями. Планктонные отравления.

Растения, вызывающие порчу молока.

Растения, вызывающие гибель пчел и порчу меда.

Растения, менее изученные в токсикологическом отношении.

 

билет 56

В1 Роль рибосом в клетке.

Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.

Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

Константа седиментации (скорость оседания в ультрацентрифуге) рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), бактериальных клеток (а также митохондрий и пластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно).

Трансляция — синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). мРНК связывается с малой субъединицей рибосомы, когда происходит узнавание 3'-концом 16S рибосомной РНК комплементарной последовательности Шайн-Далгарно, расположенной на 5'-конце мРНК (у прокариот), а также позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. У эукариот малая субчастица рибосомы связывается также с помощью кэпа, на конце мРНК. Ассоциация малой и большой субъединиц происходит при связывании формилметионил-тРНК (fMET-тРНК) и участии факторов инициации (IF1, IF2 и IF3 у прокариот; их аналоги и дополнительные факторы участвуют в инициации трансляции у эукариотических рибосом). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.

После ассоциации, fMET-тРНК находится в P- (peptidyl-) сайте каталитического(пептидил-трансферазного) центра рибосомы. Следующая тРНК, несущая на 3'-конце аминокислоту и комплементарная второму кодону на мРНК, помещается с помощью фактора EF-Tu в А- (aminoacyl-) сайт каталитического центра рибосомы. Затем, образуется пептидная связь между формилметионином (связанным с тРНК, находящейся в Р-сайте) и аминокислотой, принесенной тРНК, находящейся в А-сайте. Механизм катализа образования пептидной связи в пептидил-трансферазном центре до сих пор полностью не ясен. На данный момент существует несколько гипотез, объясняющих детали этого процесса: 1. Оптимальное позиционирование субстратов (induced fit)[5], 2. Исключение из активного центра воды, способной прервать образование пептидной цепи посредством гидролиза [6], 3. Участие нуклеотидов рРНК (таких как А2450 и А2451) в переносе протона[7][8], 4. Участие 2'-гидроксильной группы 3'-концевого нуклеотида тРНК (А76) в переносе протона [9];. Высокая эффективность катализа достигается взаимодействием этих факторов.

В2 .Геномные мутации. Болезни, связанные с нарушением количества аутосом.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия - следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ - мутагенов.

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.







Дата добавления: 2015-06-15; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия