Студопедия — Григорианский календарь
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Григорианский календарь






Юлианский год больше солнечного астрономического года на 11 минут. За 128 лет юлианский календарь на сутки отстаёт от природы. В ХVI веке за период, прошедший со времени Никейского собора день весеннего равноденствия отступил на 11 марта. В 1582 году папа римский Григорий ХIII утвердил проект календарной реформы. За 400 лет пропускаются 3 високосных года. Из «вековых» лет с двумя нулями на конце следует считать високосными лишь те, первые цифры которых без остатка делятся на 4. Следовательно, 2000 год високосный, а 2100 год високосным считаться не будет. Новый календарь получил название григорианского. Согласно декрету Григория ХIII вслед за 4 октября 1582 года наступило сразу 15 октября. В 1583 году день весеннего равноденствия снова пришёлся на 21марта. Григорианский календарь или новый стиль тоже имеет погрешность. Григорианский год на 26 секунд длиннее, чем следовало. Но смещение в одни сутки накопятся лишь за 3000 лет.

2. Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли — единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, — плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).

При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается.

Уравнение эллиптической орбиты спутника Земли в полярной системе координат определяется формулой

В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея — точку, соответствующую наибольшему значению r = ra (рис. 3.2).

Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:

Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли

h=r-R,

где R — радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а — а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора — наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°<i<90° 90°<i<180°).

Орбита спутника характеризуется также долготой апогея д — долгота подспутниковой точки (точка пересечения радиуса-вектора с поверхностью Земли) в момент прохождения спутником апогея и периодом обращения Т (время между двумя последовательными прохождениями одной и той же точки орбиты).

Для систем связи и вещания необходимо, чтобы имелась прямая видимость между спутником и соответствующими земными станциями в течение сеанса связи достаточной длительности. Если сеанс не круглосуточный, то удобно, чтобы он повторялся ежесуточно в одно и то же время. Поэтому предпочтительны синхронные орбиты с периодом обращения, равным или кратным времени оборота Земли вокруг оси, т. е. звездным суткам (23 ч 56 мин 4 с).

Широкое применение нашла высокая эллиптическая орбита с периодом обращения 12 ч, когда для систем связи и вешания использовались спутники «Молния» (высота перигея 500 км, апогея — 40 тыс. км). Движение ИСЗ на большой высоте — в области апогея — замедляется, а область перигея, расположенную над южным полушарием Земли, спутник проходит очень быстро. Зона видимости ИСЗ на орбите типа «Молния» в течение большей части витка вследствие значительной высоты велика. Она расположена в северном полушарии и поэтому удобна для северных стран. Обслуживание всей территории бывшего СССР одним из ИСЗ возможно в течение не менее 8 ч, поэтому трех ИСЗ, сменяющих друг друга, было достаточно для круглосуточной работы. В настоящее время ради исключения перерывов связи и вещания, упрощения систем наведения антенн земных станций на ИСЗ и других эксплуатационных преимуществ осуществлен переход на использование геостационарных орбит (ГСО) спутников Земли.

Орбита геостационарного ИСЗ — это круговая (эксцентриситет е = 0), экваториальная (наклонение i = 0°), синхронная орбита с периодом обращения 24 ч, с движением спутника в восточном направлении.


 

Билет

Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг Солнца. Она сформировалась путём сжатия газопылевого облака примерно 4,57 млрд лет назад[2].

Большая часть массы объектов Солнечной системы приходится на Солнце; остальная часть содержится в восьми относительно уединённых планетах, имеющих почти круговые орбиты и располагающихся в пределах почти плоского диска — плоскости эклиптики. Общая масса системы составляет около 1,0014 M .

Четыре меньшие внутренние планеты — Меркурий, Венера, Земля[19] и Марс (также называемые планетами земной группы) — состоят в основном из силикатов и металлов. Четыре внешние планеты — Юпитер, Сатурн, Уран и Нептун(также называемые газовыми гигантами) — намного более массивны, чем планеты земной группы. Крупнейшие планеты Солнечной системы, Юпитер и Сатурн, состоят главным образом из водорода и гелия; внешние, меньшие Уран и Нептун, помимо водорода и гелия, содержат в составе своих атмосфер метан и угарный газ[20]. Такие планеты выделяются в отдельный класс «гигантов» [. Шесть планет из восьми и три карликовые планеты имеют естественные спутники. Каждая из внешних планет окружена кольцами пыли и других частиц.

В Солнечной системе существуют две области, заполненные малыми телами. Пояс астероидов, находящийся между Марсом и Юпитером, сходен по составу с планетами земной группы, поскольку состоит из силикатов и металлов. Крупнейшими объектами пояса астероидов являются карликовая планета Церера и астероиды Паллада, Веста и Гигея. За орбитой Нептуна располагаются транснептуновые объекты, состоящие из замёрзшей воды, аммиака и метана, крупнейшими из которых являются Плутон, Седна, Хаумеа, Макемаке, Квавар, Орк и Эрида. В Солнечной системе существуют и другие популяции малых тел, такие как планетные квазиспутники и троянцы, околоземные астероиды, кентавры, дамоклоиды, а также перемещающиеся по системе кометы, метеороиды и космическая пыль.

Солнечный ветер (поток плазмы от Солнца) создаёт пузырь в межзвёздной среде, называемый гелиосферой, который простирается до края рассеянного диска. Гипотетическое облако Оорта, служащее источником долгопериодических комет, может простираться на расстояние примерно в тысячу раз дальше гелиосферы.

Солнечная система входит в состав галактики Млечный Путь.

2. Даже невооруженным глазом видно, что окружающий нас мир чрезвычайно разнообразен. Звезды различаются между собой цветом, блеском. А исследования с помощью телескопов показывают, что двух одинаковых звезд не бывает. Эффективные температуры их находятся в пределах от 3 000 К до 50 000 К, массы различаются в сотни раз, а радиусы – в миллиарды…

Самые яркие звезды еще в древности назвали звездами первой звездной величины. Во II веке до нашей эры древнегреческий астроном Гиппарх составил каталог звезд, видимых невооруженным глазом. Он предложил разделить все видимые звезды на шесть классов. Самые яркие из них Гиппарх назвал звездами первой звездной величины, самые слабые звезды – звездами шестой звездной величины.

Невооруженным глазом на небе можно наблюдать около 5 000 звезд (вплоть до шестой звездной величины), с помощью телескопов – миллиарды миллиардов. В астрономии вместо выражения «освещенность от звезды» используют понятие блеск.

С уменьшением блеска возрастает число звезд, доступных для наблюдения. На звездные карты нанесены все звезды ярче 11-й звездной величины.

Количество звезд ярче предельной визуальной звездной величины:

Предельная звездная величина Число звезд Предельная звездная величина Число звезд
6,0 4 850 13,0 5 700 000
7,0 14 300 15,0 32 000 000
8,0 41 000 17,0 150 000 000
9,0 117 000 19,0 560 000 000
10,0 324 000 21,0 2 000 000 000
11,0 870 000    
Таблица 6.1.1.1

Яркие звезды имеют маленькую звездную величину, более слабые звезды имеют большую звездную величину. Следуя Гиппарху, звездную величину источника условились считать тем большей, чем звезда слабее.

В середине ХIX века английский астроном Норман Погсон предложил современную шкалу звездных величин. При разности в одну звездную величину видимый блеск звезд изменяется примерно в 2,5 раза, почти как у Гиппарха. Разность в 5 звездных величин соответствует изменению блеска звезд в 100 раз. Тогда разница на одну звездную величину соответствует отличию блеска в раза.

Видимые звездные величины обозначаются буквой m. Отношение блеска Em и Em +1 двух звезд, величины которых различаются точно на единицу, выражается числом

Тогда связь между видимыми звездными величинами

Эта зависимость называется формулой Погсона.

Тот факт, что одни звезды имеют больший, а другие – меньший блеск, не дает настоящей информации о звезде. Очень яркая звезда может иметь большую светимость, но находиться очень далеко, а потому иметь очень большую звездную величину. Для определения истинного блеска звезды вводят понятие абсолютной звездной величины.

Абсолютная звездная величина M – это видимая звездная величина, которую имела бы звезда, если бы находилась на стандартном расстоянии в 10 пк или 32,6 светового года.

Связь абсолютной звездной величины M, видимой звездной величины m и расстояния до звезды R в парсеках:

M = m + 5 – 5 lg R.

 

Билет

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.

Рисунок 1.24.2. Эллиптическая орбита планеты массой m << M. a – длина большой полуоси, F и F' – фокусы орбиты

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Рисунок 1.24.3. Закон площадей – второй закон Кеплера

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, заметенная радиус-вектором за малое время Δ t, приближенно равна площади треугольника с основанием r Δθ и высотой r:

Здесь – угловая скорость (см. §1.6).

Момент импульса L по абсолютной величине равен произведению модулей векторов и

так как

Из этих отношений следует:

Поэтому, если по второму закону Кеплера то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

rP υ P = rA υ A.

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

или

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Рисунок 1.24.4. Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы

2. Со́лнечные пя́тна — тёмные области на Солнце, температура которых понижена примерно на 1500 К по сравнению с окружающими участками фотосферы. Наблюдаются на диске Солнца (с помощью оптических приборов, а в случае крупных пятен — и невооружённым глазом) в виде тёмных пятен. Солнечные пятна являются областями выхода в фотосферу сильных (до нескольких тысяч гаусс) магнитных полей. Потемнение фотосферы в пятнах обусловлено подавлением магнитным полем конвективных движений вещества и, как следствие, снижением потока переносатепловой энергии в этих областях.

Количество пятен на Солнце (и связанное с ним число Вольфа) — один из главных показателей солнечной магнитной активности.

На более холодных звёздах (класса K и холоднее) наблюдаются пятна намного большей площади, чем на Солнце.

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса трубки магнитного поля «прорываются» сквозь фотосферу в область короны, и сильное поле подавляет конвективное движение плазмы вгранулах, препятствуя в этих местах переносу энергии из внутренних областей наружу. Сначала в этом месте возникает факел, чуть позже и западнее — маленькая точка, называемая по́ра, размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные группы пятен могут наблюдаться в течение нескольких оборотов Солнца. Именно этот факт (движение наблюдаемых пятен по солнечному диску) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно образуются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или биполярная группа: два пятна разной магнитной полярности, соединённые линиями магнитного поля. Западное пятно в такой биполярной группе называется «ведущим», «головным» или «P-пятном» (от англ. preceding), восточное — «ведомым», «хвостовым» или «F-пятном» (от англ. following).

Только половина пятен живёт больше двух дней, и всего десятая часть — более 11 дней.

В начале 11-летнего цикла солнечной активности пятна на Солнце появляются на высоких гелиографических широтах (порядка ±25—30°), а с ходом цикла пятна мигрируют к солнечному экватору, в конце цикла достигая широт ±5—10°. Эта закономерность носит название «закон Шпёрера».

Группы пятен ориентируются приблизительно параллельно солнечному экватору, однако отмечается некоторый наклон оси группы относительно экватора, который имеет тенденцию к увеличению для групп, расположенных дальше от экватора (т. н. «закон Джоя»).

Средняя температура поверхности Солнца около 6000 К (эффективная температура — 5770 К, температура излучения — 6050 К). Центральная, самая темная, область пятен имеет температуру всего около 4000 К, наружные области пятен, граничащие с нормальной поверхностью, — от 5000 до 5500 К. Несмотря на то, что температура пятен ниже, их вещество все равно излучает свет, пусть и в меньшей степени, чем остальная поверхность. Именно из-за этой разницы температур при наблюдении и возникает ощущение, что пятна темные, почти черные, хотя на самом деле они тоже светятся, однако их свечение теряется на фоне более яркого солнечного диска.

Центральная тёмная часть пятна носит название тени. Обычно её диаметр составляет около 0,4 диаметра пятна. В тени напряжённость магнитного поля и температура довольно однородны, а интенсивность свечения в видимом свете составляет 5-15 % от фотосферной величины. Тень окружена полутенью, состоящей из светлых и тёмных радиальных волокон с интенсивностью свечения от 60 до 95 % от фотосферного.


 

Билет

1.1 Система мира Птолемея

Объяснение видимых движений планет и других небесных тел «осложняется тем, что все эти движения наблюдаются нами с Земли, а ничто в наблюдениях небесных или земных явлений не указывает прямо и определенно на то, движется ли сама Земля или она неподвижна. Поэтому у древних астрономов были две точки зрения на этот вопрос. Согласно одной из них, основанной на непосредственных впечатлениях, Земля неподвижна и находится в центре мира (Вселенной). Согласно второй, основанной тогда лишь на чисто умозрительных заключениях, Земля вращается вокруг своей оси и движется вокруг Солнца как центра мира. Но допущение движения Земли слишком противоречило обычным впечатлениям и религиозным взглядам. Поэтому вторая точка зрения не могла получить подробного математического развития, и на долгое время в астрономии утвердилось мнение о неподвижности Земли.

Представления древних астрономов о строении Вселенной изложены в сочинении Птолемея «Мегале синтаксис» («Великое построение»). Арабский перевод сочинения Птолемея известен под искаженным арабскими учеными названием «Альмагест».

В основе системы мира Птолемея лежат четыре главных допущения: 1) Земля находится в центре Вселенной; 2) Земля неподвижна; 3) все небесные тела движутся вокруг Земли; 4) движения небесных тел происходят по окружностям с постоянной скоростью, т. е. равномерно.

Система мира Птолемея называется геоцентрической и может быть представлена в следующем упрощенном виде: планеты движутся равномерно по кругам эпициклам, центры которых в свою очередь движутся по другим кругам—деферентам, в общем центре которых находится неподвижная Земля. Солнце и. Луна движутся вокруг Земли по деферентам (без эпициклов). Деференты Солнца и Луны, деференты и эпициклы планет лежат внутри сферы, на поверхности которой расположены «неподвижные» звезды.

Суточное движение всех светил объяснялось вращением всей Вселенной как одного целого вокруг неподвижной Земли. Прямые и попятные движения планет объяснялись следующим образом. Когда планета находится в точке своего эпицикла, то угловая скорость ее движения, наблюдаемая с неподвижной Земли, складывается из движения центра эпицикла по деференту и движения планеты по эпициклу. В этом положении планета будет казаться движущейся прямым движением и с наибольшей скоростью. Когда планета находится в точке B, то ее движение по эпициклу происходит в сторону, противоположную движению центра эпицикла, и ее угловая скорость, наблюдаемая с Земли, будет наименьшей. Если при этом скорость планеты по эпициклу будет меньше скорости центра эпицикла, то планета в этом положении будет казаться движущейся также прямым движением, но замедленно. Если же скорость ее по эпициклу будет больше скорости центра эпицикла, то она будет казаться движущейся попятным движением.

Для каждой планеты Птолемей подобрал относительные размеры радиусов эпицикла и деферента, и скорости движения планеты по эпициклу и центра эпицикла по деференту так, что при наблюдении из точки T получалось движение, совпадающее или близкое к наблюдаемому. Это оказалось возможным при выполнении некоторых условий, которые Птолемей принял в качестве постулатов. Эти постулаты сводились к следующему:

1) центры эпициклов нижних планет лежат на направлении из T к Солнцу;

2) у всех верхних планет этому направлению параллельны радиусы эпициклов, проведенные в точку положения планеты.

Таким образом, направление на Солнце в геоцентрической системе мира фактически оказывалось преимущественным. Кроме того, из системы Птолемея следовало, что периоды обращения центров эпициклов по деферентам равны звездным периодам обращения соответствующих планет, а периоды обращения планет по эпициклам равны их синодическим периодам. Сказанное означает, что система мира Птолемея заключала в себе важнейшие особенности действительных движений планет, которые смогли быть полностью раскрыты только благодаря гению Коперника.

Система Птолемея не только объясняла видимые движения планет, но и позволяла вычислять их положение на будущее время с точностью, удовлетворявшей несовершенным наблюдениям невооруженным глазом. Поэтому, хотя и не верная в своей основе, она сначала не вызывала серьезных возражений, а в последствии открытые возражения против нее жестоко подавлялись христианской церковью.

Разногласия же теории с наблюдениями, которые обнаружи­вались по мере повышения точности наблюдении, устранялись путем усложнения системы. Так, например, некоторые непра­вильности в видимых движениях планет, открытые позднейшими наблюдениями, объяснялись тем, что вокруг центра первого эпи­цикла обращается не планета, а центр второго эпицикла, по окружности которого движется уже планета. Когда и такое по­строение для какой-либо планеты оказывалось недостаточным, то вводили третий, четвертый и т. д. эпициклы, пока положение планеты на окружности последнего из них не давало более или менее сносного согласия с наблюдениями.

К началу XVI в. система Птолемея была настолько сложна, что не могла уже удовлетворить тем требованиям, которые предъявлялись к астрономии практической жизнью, в первую очередь мореплаванием. Нужны были более простые методы вычисления положений планет, и такие методы были созданы благодаря великому творению гениального польского ученого Николая Коперника, заложившему основы новой астрономии, без которых не могла бы возникнуть и развиваться современ­ная астрономия.

1.2 Система мира Коперника

Книга Коперника «Об обращениях небесных сфер», труд всей его жизни, была опубликована в 1543 г., незадолго до смерти учёного. В этом сочинении Коперник математически разработал идею о движениях Земли и положил начало, новой астрономии.
Созданная им система мира называется гелиоцентрической. Ее основе лежали следующие утверждения: I) в центре мира находится Солнце (по-гречески — Гелиос), а не Земля;

2) шарообразная Земля вращается вокруг своей оси и это вращение объясняет кажущееся суточное движение всех светил;

3) Земля, как и все другие планеты, обращается вокруг Солнца и это обращение объясняет видимое движение Солнца среди звезд;

4) все движения представляются в виде комбинации равномерных
круговых движений;

5) кажущиеся прямые и попятные движения планет принадлежат не им, но Земле.

Кроме-того Коперник считал, что Луна движется вокруг Земли, и как спутник, вместе с Землей, — вокруг Солнца.

Исходя из наблюдательных данных, Коперник, прежде всего, пришел к заключению, что все планеты, в том числе и Земля, движутся вокруг Солнца примерно в одной и той же плоскости. Только при этом условии видимые с Земли пути планет на небе могут располагаться вблизи эклиптики. Это положение приведено в формулировке самого Н. Коперника

Так как Меркурий и Венера в своих видимых движениях не отходят далеко от Солнца, то их пути в пространстве, или орбиты, расположены к Солнцу ближе, чем орбита Земли. При этом Венера находится дальше от Солнца, чем Меркурий, так как ее видимые отклонения от Солнца больше. Остальные планеты обращаются вокруг Солнца на более далеком расстоя­нии, чем Земля. Ближе всех к Земле расположен Марс, так как его видимое движение среди звезд самое быстрое. Затем следует более «медленный» Юпитер и совсем «медленный» Сатурн.

Коперник впервые в астрономии дал правильный план строения Солнечной системы, определив относительные расстояния' планет от Солнца (в единицах расстояния Земли от Солнца) и вычислив периоды их обращений вокруг него. Объяснения видимых движений планет Коперником, хотя его третье и четвертое утверждения и неверны, просты и естественны, и в своей основе не противоречат научному объяснению этих явлений современной астрономией.

Суточное вращение всех небесных светил Коперник правильно считал явлением кажущимся и объяснял его вращением Земли вокруг своей оси. Годичное движение Солнца по эклиптике Коперник также считал лишь видимым движением, вызванным действительным движением Земли и пространстве вокруг Солнца. Так как звезды находятся от Земли гораздо дальше, чем Солнце, то при движении Земли вокруг пего оно кажется нам перемещающимся среди неподвижных звезд всегда в одном к том же направлении. Наконец, сложные видимые прямые и по­пятные движения планет объяснялись Коперником как резуль­тат сочетания двух действительных движений-движения планеты и движения Земли по их орбитам вокруг Солнца

2. Солнечная активность — комплекс явлений и процессов, связанных с образованием и распадом в солнечной атмосфере сильных магнитных полей.

Солнечными циклами называются периодические изменения в солнечной активности. Предполагается наличие большого количества циклов с периодами 11, 22, 87, 210, 2300 и 6000 лет. Основные циклы продолжительностью 11, 22 и 2300 лет носят также название, соответственно, циклов Швабе, Хейла и Холлстатта.







Дата добавления: 2015-08-30; просмотров: 1733. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия