Студопедия — Нормальный закон распределения. В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения. В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса)






В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность вероятности ее имеет вид

где α = М(Х) — математическое ожидание случайной величины; — среднее квадратическое отклонение; следовательно, дисперсия случайной величины.

Изменение а при постоянной а не влияет на форму кривой, а лишь сдвигает ее вдоль оси абсцисс. Площадь, заключенная под кривой, согласно условию нормировки, равна единице. На рисунке 2.1 изображены три кривые. Для кривых 1 и 2 а = 0, эти кривые отличаются зна­чением σ (σ1 < σ2); кривая 3 имеет а = 0 (σ = σ2). Вычислим функцию распределения (2.19) для этого случая:

Обычно используют иное выражение функции нормального распределения. Введем новую переменную t = (x-a)/σ, следовательно, dx = σdt. Подставив эти значения в (2.23), получим

 

Значения функции Ф(t) обычно находят в специально составленных таблицах (см. [2]), так как интеграл (2.24) через элементарные функции не выражается. График функции Ф(t) изображен рисунке 2.2.На основании (2.17) можно вычислить вероятность того, что случайная величина при нормальном распределении находится в интервале (x1 x2). Без вывода, по аналогии с (2.24), укажем, что эта вероятность равна

 

 

 

 

Воспользуемся выражением (2.25) для вычисления следующих вероятностей:

 

Отметим, что Ф(-t) = 1 - Ф(t), поэтому Р = 2Ф(1) - 1. По таб­лице находим Ф(+1) = 0,8413. откуда

 

По таблице находим Ф(2) = 0,9772, откуда

 

По таблице находим Ф(3) = 0,9986. откуда

 

 

На рисунке 2.3 приведено нормальное распределение (σ = 0) и штриховкой показаны области, площади которых равны вероят­ностям 0,683 и 0,954.

Допустим, что произвольно из нормального распределения вы­бираются группы по п значений случайных величин. Для каждой группы можно найти средние значения, соответственно x1, х2,..., xi,.... Эти средние значения сами образуют нормальное распреде­ление (в отличие от изложенного выше нормального распределе­ния здесь каждому среднему значению xi будет соответствовать не вероятность, а относительная частота). Математическое ожидание такого «нового» нормального распределения равно математическому ожиданию исходного нормального распределения, а дисперсия (Dn) и среднее квадратическое отклонение (σп) отличаются соответственно в п и в √n раз относительно этих характеристик исходного распределения:

Это положение здесь не доказывается, но его можно проиллюстрировать рисунком 2.4, на котором приведены графики нормальных распределений, полученных для групп со значениями п, активными 1,4, 16, и n→∞. Рассмотрим крайние частные случаи. При п = 1 приходим к исходному нормальному распределению, потому σn = σ. При п →∞ σn → 0; фактически в этом случае «группами случайных величин» — это все исходное распределение, Других групп нет, поэтому среднее значение выражается только одним числом и оно соответствует математическому ожиданию. юсе распределение сводится к этому значению математического ожидания (на графике представлено вертикальной линией).

 







Дата добавления: 2015-08-30; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия