Студопедия — Оценка параметров генеральной совокупности по ее выборке
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка параметров генеральной совокупности по ее выборке






Предположим, что генеральная совокупность является нор­мальным распределением (здесь вместо вероятности следует ис­пользовать относительную частоту). Нормальное распределение полностью определено математическим ожиданием (средним зна­чением) и средним квадратическим отклонением. Поэтому если по выборке можно оценить, т. е. приближенно найти, эти парамет­ры, то будет решена одна из задач математической статистики — определение параметров большого массива по исследованию его части.

Как и для выборки, для генеральной совокупности можно оп­ределить генеральную среднюю хr — среднее арифметическое значение всех величин, составляющих эту совокупность. Учиты­вая большой объем этой совокупности, можно полагать, что гене­ральная средняя равна математическому ожиданию:

где X — общая запись случайной величины (значения изучаемого признака) генеральной совокупности.

Рассеяние значений изучаемого признака генеральной сово­купности от их генеральной средней оценивают генеральной дис­персией

(N — объем генеральной совокупности) или генеральным сред­ним квадратическим отклонением

Точечная оценка. Предположим, что из генеральной совокуп­ности производятся разные выборки; делают это так, чтобы вся генеральная совокупность сохранялась неизменной. Для опреде­ленности будем считать объемы этих выборок одинаковыми и рав­ными п. Их выборочные средние х1, х2,..., xi.,... являются случай­ными величинами, которые распределены по нормальному зако­ну (см. конец § 2.3), а их математическое ожидание равно математическому ожиданию генеральной совокупности, т. е.генеральной средней:

На практике иногда при достаточно большой выборке за генераль­ную среднюю приближенно принимают выборочную среднюю. Для дисперсий положение получается несколько иным. Математическое ожидание дисперсий различных выборок [M(Dвi)], со­ставленных из генеральной совокупности, отличается от генеральной дисперсии:

При большом п получаем

Для генерального среднего квадратического отклонения соответ­ственно из (3.14) и (3.14а) получаем:

На практике иногда при достаточно большой выборке выбороч­ное среднее квадратическое отклонение приближенно принимают за генеральное среднее квадратическое отклонение. Так, если счи­тать, что статистическое распределение (см. табл. 5) является вы­боркой из некоторой генеральной совокупности, то на основании (3.6) и (3.9) можно заключить, что для этой генеральной совокуп­ности xr 3,468 кг и σг ≈ 0,3896 кг.

Такого рода оценка параметров генеральной совокупности или каких-либо измерений определенными числами называется то­чечной оценкой.

Интервальная оценка генеральной средней. Точечная оцен­ка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупности. Поэтому при не­большом объеме выборки пользуются интервальными оценками.

В этом случае указывается интервал (доверительный интер­вал, или доверительные границы), в котором с определенной (до­верительной) вероятностью р находится генеральная средняя.

 

Иначе говоря, р определяет вероятность, с которой осуществ­ляются следующие неравенства:

зуя функцию (3.18). Пределы интегрирования необходимо взять из выражения (3.19):

где положительное число е характеризует точность оценки.

Кроме доверительной вероятности используют «противопо­ложное» понятие — уровень значимости

который выражает вероятность непопадания генеральной сред­ней в доверительный интервал.

Доверительную вероятность не следует выбирать слишком ма­ленькой (не следует ее обесценивать). Наиболее часто р прини­мают равной 0,95; 0,99; 0,999. Чем больше р, тем шире интервал, т. е. тем больше е. Чтобы установить количественную связь между этими величинами, необходимо найти выражение для довери­тельной вероятности. Это можно сделать, используя (2.17), одна­ко нужно понять, что при этом следует взять за функцию распределения вероятностей и какие принять пределы ин­тегрирования. Рассмотрим этот вопрос.

Итак, генеральная совокупность распределена по нормальному закону с математическим ожиданием (средним значением) хГ и дисперсией DT. Если из этой генеральной совокупности брать раз­ные выборки с одинаковым объемом п, то можно для каждой вы­борки получить среднее значение хв. Эти средние значения сами являются случайными величинами. Их распределение, т. е. рас­пределение средних значений разных выборок, полученных из одной генеральной совокупности, будет нормальным со средним значением, равным среднему значению генеральной совокупности хт, дисперсией — и средним квадратическим отклонением (см. конец § 2.2).

Таким образом, хв уже выступает как случайная величина, для нее можно записать следующую функцию распределения вероят­ностей [см. (2.22)]:

Из (3.16) можно записать для хв следующие неравенства:

 

Вероятность того, что хв попадает в этот интервал (доверитель­ную вероятность), можно найти по общей формуле нахождения р по х или т по р можно воспользоваться таол. ( или таблицей функции Ф (см. [2]).

 

 

Результаты интегрирования (3.20) найдем, используя функ­цию Ф (см. § 2.3). По формуле (2.25) получим

Обозначая

и учитывая (см. § 2.3), что Ф(-τ) = 1 - Ф(τ), получим из (3.21):

Таблица 7

τ                    
0,0 0,5 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359
0,4                    
0,9                    
1,4                    
1,9                    

Хотя неравенства (3.16) и (3.19) по существу идентичны, но для практических целей важнее запись (3.16), так как она позво­ляет решить главную задачу — при заданной доверительной веро­ятности и найденной выборочной средней найти доверительный интервал, в который попадает генеральная средняя.

Запишем неравенство (3.16), подставив в него выражение εиз формулы (3.22):

Практически при нахождении доверительного интервала по фор­муле (3.24) берут выборочную среднюю некоторой конкретной вы­борки (объем п > 30), а вместо генеральной средней квадратичной используют выборочную среднюю квадратичную этой же выборки. Поясним это некоторым примером. Вновь обратимся к данным таблиц, считая их выборкой. Найдем доверительный интервал для генеральной средней, из которой эта выборка получена, счи­тая доверительную вероятность равной р = 0,95. Из (3.23) для такой доверительной вероятности получаем: Ф(τ) = 0,975.

В табл. 7 левый вертикальный столбец содержит значения с точ­ностью до десятых долей, а верхняя горизонтальная строчка дает сотые доли т, поэтому для Ф(х) = 0,975 имеем х = 1,9 + 0,06 = = 1,96. Подставляя это значение τ, выборочную среднюю (3.6), выборочное среднее квадратическое отклонение (3.9) и объем вы­борки (п = 100) в выражение (3.24),

или

Интервальная оценка генеральной средней при малой вы­борке. При достаточно большом объеме выборки можно сделать вполне надежные заключения о генеральной средней. Однако на практике часто имеют дело с выборками небольшого объема (п < 30). В этом случае в выражении доверительного интервала (3.16) точ­ность оценки определяется по следующей формуле:

где t — параметр, называемый коэффициентом Стьюдента (его на­ходят из распределения Стьюдента; оно здесь не рассматривает­ся), который зависит не только от доверительной вероятности р, но и от объема выборки п. Коэффициент Стьюдента. Запишем неравенство (3.16), подставив в него выражение из формулы (3.26): 4п - 1

Поясним использование формулы (3.26) следующим примером. Предположим, что из генеральной совокупности, которую исполь­зовали при составлении выборки (см. табл. 5), взяли 10 случайных данных и получили следующее распределение (табл. 9):

Таблица 9

Масса, кг 3,0 3,1 3,2 3,3 3,4 3,5 3,7 3,8 4,0 4,4
Частота                    

Отсюда можно вычислить хв = 3,54 кг, DB = 0,19156 кг2 и св = 0,43767 кг. Задав доверительную вероятностью = 0,95, находим для объема выборки п — 10 параметр t = 2,26. Подставляя эти данные в (3.26), получаем для доверительного интервала [см. (3.27)]:

Полезно сопоставить соотношения, полученные для большой (3.25) и малой (3.28) выборок.

Интервальная оценка истинного значения измеряемой ве­личины. Интервальная оценка генеральной средней может быть ис­пользована для оценки истинного значения измеряемой величины.

Пусть несколько раз измеряют одну и ту же физическую вели­чину. При этом по разным случайным причинам, вообще говоря, получают разные значения: x1 x2, х3,.... Будем считать, что нет преобладающего влияния какого-либо фактора на эти измерения.

Истинное значение измеряемой величины (xист) совершенно точ­но измерить невозможно хотя бы по причине несовершенства изме­рительных приборов. Однако можно дать интервальную оценку для этого значения.

Если значения x1 x2, х3,... рассматривать как варианты выбор­ки, а истинное значение измеряемой величины хист как аналог ге­неральной средней, то можно по описанным выше правилам найти доверительный интервал, в который с доверительной вероятно­стью р попадает истинное значение измеряемой величины. Приме­нительно к малому числу измерений (п < 30) из (3.27) получим:

где х — среднее арифметическое значение из полученных измере­ний, а σ — соответствующее им среднее квадратическое отклоне­ние, t — коэффициент Стьюдента.

Более подробно и разносторонне оценка результатов измере­ний рассматривается в практикуме (см. [1]).







Дата добавления: 2015-08-30; просмотров: 946. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия