Студопедия — Механические свойства твердых тел
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механические свойства твердых тел






Изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров, называют деформацией. Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или изменение температуры тела. Здесь рассматриваются деформации, возникающие при действии сил на тело.

В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т, е. неполное исчезновение деформации, принято называть упругопластической деформацией.

Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне (рис. 8.11) при действии силы, направленной вдоль его оси. Если стержень дли­нной I при этом удлинился на ∆1, то е = ∆l/l является мерой деформации растяжения и называется относительным удлинением. Другим видом деформации является сдвиг (рис. 8.12).

Сила, касательная к одной из граней прямоугольного параллелепипеда,

вызывает его деформацию, превращая в косоугольный параллеле­пипед (см. штриховые линии на рисунке). Угол у называют углом сдвига, a tg γ — относительным сдвигом. Так как обычно угол у мал, то можно считать tg γ = γ.

При действии на тело внешней деформирующей силы расстоя­ние между атомами (ионами) изменяется. Это приводит к возник­новению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механиче­ское напряжение (или просто напряжение).

Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Косвенно напряжение можно определить по некоторым физиче­ским эффектам (см., например, § 20.5).

Применительно к деформации растяжения напряжение а мож­но выразить как отношение силы к площади поперечного сечения стержня (см. рис. 8.11, б):

Для деформации сдвига напряжение т выражают как отношение силы к площади грани, к которой сила касательна (см. рис. 8.12, б). В этом случае τ называют касательным напряжением:

Упругие деформации подчиняются закону Гука, согласно кото­рому напряжение пропорционально деформации. Для двух рас­смотренных случаев (растяжение-сжатие и сдвиг) это аналитиче­ски записывается так:

где Е — модуль Юнга, a G — модуль сдвига.

Экспериментальная кривая растяжения приведена на рис. 8.13. Участок ОА соответствует упругим деформациям, точка В — преде­лу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонталь­ный участок CD кривой растяжения соответствует пределу теку­чести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.

Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например, в пределах прочности сталь разрывается уже

 

при растяжении на 0,3%, а мягкие резины можно растягивать до,300%. Это связано с качественно другим механизмом упругос­ти высокомолекулярных соединений.

Как уже говорилось, при деформации кристаллических твер­дых тел, например стали, силы упругости всецело определяются, изменением межатомных расстояний. Структура высокомолеку­лярных соединений не регулярна. Они состоят из очень длинных гибких молекул, которые причудливо изогнуты, части молекул находятся в хаотическом тепловом движении так, что их форма и длина все время изменяются. Но в каждый данный момент боль­шинство молекул в недеформированном образце имеет длину, близкую к наиболее вероятной. При приложении нагрузки к мате­риалу (рис. 8.14, а) его молекулы выпрямляются в соответствую­щем направлении и длина образца увеличивается (рис. 8.14, б). После снятия нагрузки вследствие хаотического теплового движе­ния длина каждой молекулы восстанавливается и образец укора­чивается.

Упругость, свойственную полимерам, называют каучукоподобной эластичностью (высокой эластичностью или высокоэластичностью).

Приведем данные по механическим свойствам некоторых ма­териалов (табл. 16).

Таблица 16

Материал Модуль Юнга, ГПа Предел прочности, МПа
Сталь Капрон стеклонаполненный Органическое стекло   3,5  

 

Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависи­мости. Дело в том, что практически все материалы обладают пол­зучестью: под действием постоянной нагрузки происходит их де­формация. В полимерах распрямление молекул при нагрузке ма­териала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползу­чести процессы, происходящие в полимере, соответствуют тече­нию вязкой жидкости. Сочетание вязкого течения и высокой элас­тичности позволяет называть деформацию, характерную для по­лимеров, вязкоупругой.

Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства био­логических объектов (см. § 8.4).

В качестве модели упругого тела (упругой деформации) выбе­рем пружину (рис. 8.15, а), малая деформация которой соответст­вует закону Гука.

Моделью вязкого тела является поршень с отверстиями, дви­жущийся в цилиндре с вязкой жидкостью (рис. 8.15, б).

 
 

Силу сопротивления среды в этом случае примем пропорци­ональной скорости перемещения поршня [см. (5.16)]:

 

Преобразуем уравнение (8.2), осно­вываясь на аналогии. Вместо силы со­противления запишем напряжение (Fconp → σ), т. е. силу, отнесенную к еди­нице площади, коэффициент трения, характеризующий свойство среды ока­зывать сопротивление движущемуся в ней телу, заменим коэффициентом вяз­кости среды (r → η), смещение тела — относительным удлинением (x → ε). Тог­да вместо (8.2) получим связь между скоростью вязкой деформации и напря­жением:

 
 

 

В справедливости (8.3) частично мож­но убедиться проверкой размерностей: σ [Па], η[Па • с], dε/dt[с-1]. Из (8.3) видно, что напряжение зависит не от самой деформации, а от ее ско­рости (скорости перемещения поршня).

Вязкоупругие свойства тел моделируются системами, состоя­щими из различных комбинаций двух простых моделей: пружина и поршень. Рассмотрим некоторые из них.

Наиболее простой системой, сочетающей упругие и вязкие свойства, является модель Максвелла, в которой последовательно соединены упругий и вязкий элемент (рис. 8.15, в).

При воздействии постоянной силой пружина упруго мгновенно удлиняется до значения, определяемого законом Гука, а поршень движется с постоянной скоростью до тех пор, пока действует си­ла (напряжение). Так реализуется на модели ползучесть материалa.

Если быстро растянуть модель Максвелла и закрепить это со­стояние, то деформация будет сохраняться. Пружина после быст­рого растяжения начнет сокращаться, вытягивая поршень. Со временем будет происходить релаксация, т. е. уменьшение (рас­слабление) напряжения.

 
 

Опишем математически эту модель. Из закона Гука (8.1) сле­дует εупр = σ/E, где εупр — упругая часть общей деформации в мо­дели Максвелла. Скорость этой деформации равна

 

Скорость вязкой деформации выразим из (8.3):

 
 

 
 

Суммируя (8.4) и (8.5), находим скорость общей (суммарной) деформации модели Максвелла:

 

Из уравнения (8.6) можно получить временные зависимости как деформации, так и напряжения.

Если σ= const и dσ/dt = 0 (постоянная сила приложена к мо­дели), то из (8.6) следует

 
 

Интегрируя последнее выражение от начального момента време­ни и нулевой деформации до текущих значений t и ε, получаем

Это соответствует ползучести (рис. 8.16, а).

Если ε = const и dε/dt = 0 (поддерживается постоянная деформация), то из (8.6) следует

Интегрируя последнее выражение от начального момента времени и начального напряжения σ0 до текущих значений t и σ, получаем:

Это соответствует релаксации напряжения (рис. 8.16, б).

В рамках модели Максвелла под действием нагрузки происхо­дит, как было показано, быстрое (мгновенное) первоначальное уп­ругое растяжение. В реальных полимерах вязкоупругая деформа­ция обычно происходит сразу же после приложения нагрузки. Поэтому более подходящей может оказаться модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и по­ршня, нечто вроде амортизатора в автомашине (см. рис. 8.15, г).

Если мгновенно создать в такой системе напряжение

приложив постоянную силу, то деформация системы будет воз­растать. Используя (8.1) и (8.3), преобразуем (8.9):

 

Проинтегрируем последнее выражение от начального момента времени и нулевой деформации до текущих значений t и ε:

 
 

 
 

Потенцируя, имеем

Как видно, в рамках модели Кельвина—Фойхта деформация экспоненциально возрастает со временем. При снятии нагрузки (σ = 0 в момент t1 деформация начнет экспоненциально убывать. Оба эти случая показаны на рис. 8.17.

В полимерах реализуются разные виды деформации: упругая обратимая (модель — пружина), вязкоупругая обратимая (модель Кельвина—Фойхта) и необратимая вязкая (модель — поршень). Сочетание этих трех элементов позволяет создавать модели, наи­более полно отражающие механические свойства тел и, в частнос­ти, биологических объектов.

Моделирование механических свойств тел широко используется в реологии. Основная задача реологии — это выяснение зависимости напряжения от относительной деформации: σ = f(ε); напряжения от времени (релаксация напряжения): σ = f(t) при ε = const; относи­тельной деформации от времени (ползучесть): ε = f(t) при σ = const.

 







Дата добавления: 2015-08-30; просмотров: 1032. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия