Студопедия — Определение скорости кровотока
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение скорости кровотока






Существует несколько методов определения скорости кровото­ка. Рассмотрим физические основы двух из них.

Ультразвуковой метод (ультразвуковая расходеметрия) основан на эффекте Доплера (см. § 5.10). От генератора I электри­ческих колебаний УЗ-частоты (рис. 9.15) сигнал поступает на из­лучатель 2 и на устройство сравнения частот 3. УЗ-волна 4 прони­кает в кровеносный сосуд 5 и отражается от движущихся эритро­цитов 6. Отраженная УЗ-волна 7 попадает в приемник 8, где преобразуется в электрическое колебание и усиливается. Усилен­ное электрическое колебание попадает в устройство 3. Здесь срав­ниваются колебания, соответствующие падающей и отраженной волнам, и выделяется доплеровский сдвиг частоты в виде электрического колебания:

 
 

Из формулы (5.65) можно определить скорость эритроцитов:

 
 

В крупных сосудах скорость эритроцитов различна в зависи­мости от их расположения относительно оси: «приосевые» эрит­роциты движутся с большей скоростью, а «пристеночные» — с меньшей. УЗ-волна может отражаться от разных эритроцитов, поэтому доплеровский сдвиг получается не в виде одной частоты, а как интервал частот. Таким образом, эффект Доплера позволяет определять не только среднюю скорость кровотока, но и скорость движения различных слоев крови.

Электромагнитный метод (электромагнитная расходометрия) измерения скорости кровотока основан на отклонении движущихся зарядов в магнитном поле. Дело в том, что кровь, бу­дучи электрически нейтральной системой, состоит из положи­тельных и отрицательных ионов. Следовательно, движущаяся кровь является потоком заряженных частиц, которые перемещаются со скоростью Укр. На движущийся электрический заряд q в магнитном поле с индукцией В действует сила (см. § 13.3)

Если заряд отрицательный, то сила направлена противоположно векторному произведению vкрх В.

Как показано на рис. 9.16, силы, действующие со стороны маг­нитного поля на разноименные заряды, направлены в противоположные стороны. Около одной стенки кровеносного сосуда преоб­ладает положительный заряд, около другой — отрицательный.
Перераспределение зарядов по сечению сосуда вызовет появление электрического поля.

 
 

Возникающее электрическое напряжение U (см. рис. 9.16) зависит от ско­рости движения ионов, т. е. от скорости крови [см. (9.19)]. Таким образом, из­меряя это напряжение, можно опреде­лить и скорость кровотока. Зная сече­ние S сосуда, нетрудно вычислить объ­емную скорость кровотока (м3/с):

Практически удобнее в этом методе использовать переменное магнитное поле (рис. 9.17). Это приводит к возникновению переменного напряжения U, котopoe затем усиливается и измеряется.

Р А З Д Е Л 3

Термодинамика. Физические процессы в биологических мембранах

В

разделе рассматриваются явления, сущность которых определяется хаотическим движени­ем огромного числа молекул, из которых состоят тела разной при­роды. Изучая эти явления, применяют два основных метода. Один из них — термодинамический, он исходит из основных опытных законов, получивших название начал (законов, принци­пов) термодинамики. При таком подходе не учитывается внутрен­нее строение вещества.

Другой метод — молекулярно-кинетический (статистиче­ский) — основан на представлении о молекулярном строении ве­щества. Учитывая, что число молекул в любом теле очень велико, можно, используя теорию вероятностей, установить определен­ные закономерности.

В разделе в разной степени используются оба подхода.

Медикам данные вопросы важны для понимания энергетики организма, теплообмена биологических систем с окружающей средой, выяснения физических процессов, происходящих в био­логических мембранах, и др.

Г Л А В А 10 Термодинамика

 

Под термодинамикой понимают раздел физики, рассматри­вающий тела, между которыми возможен обмен энергией (термодинамические системы), без учета микроскопическо­го строения тел, составляющих систему. Различают термоди­намику равновесных систем или систем, переходящих к рав­новесию (классическая, или равновесная, термодинамика, часто называемая просто термодинамикой), и термодинами­ку неравновесных систем (неравновесная термодинамика). Неравновесная термодинамика играет особую роль для рас­смотрения биологических систем.

В главе наряду с термодинамикой изложены также вопросы, связанные с использованием низких температур и нагретых сред для лечения, а также элементы термометрии и калори­метрии.

Основные понятия термодинамики. Первое начало термодинамики

Состояние термодинамической системы характеризуется фи­зическими величинами, называемыми параметрами системы (объем, давление, температура, плотность и т. д.).

Если параметры системы при взаимодействии ее с окружающи­ми телами не изменяются с течением времени, то состояние систе­мы называют стационарным. Примерами таких состояний в те­чение небольшого отрезка времени являются состояние внутрен­ней части работающего домашнего холодильника, состояние тела Человека, состояние воздуха в отапливаемом помещении и т. д.

В разных частях системы, находящейся в стационарном со­стоянии, значения параметров обычно различаются: температура в разных участках тела человека, концентрация диффундирую­щих молекул в разных частях биологической мембраны и т. п. В системе, таким образом, поддерживаются постоянные градиен­ты некоторых параметров, с постоянной скоростью могут проте­кать химические реакции.

 
 

Стационарное состояние поддерживается за счет потоков энер­гии и вещества, проходящих через систему. Схематически на рис. 10.1, а показано стационарное состояние, температура неодина­кова в разных точках системы. Ясно, что в стационарном состоя­нии могут находиться такие системы, которые либо обменивают­ся и энергией, и веществом с окружающими системами (откры­тые системы), либо обмениваются только энергией (закрытые системы).

Термодинамическая система, которая не обменивается с окружающими телами ни энергией, ни веществом, называет­ся изолированной. Изолированная система со временем прихо­дит в состояние термодинамического равновесия. В этом состоя­нии, как и в стационарном, параметры системы сохраняются не­изменными во времени. Существенно, что в равновесном состоянии параметры, не зависящие от массы или числа частиц (давление, температура и др.), одинаковы в разных частях этой системы.

Естественно, что любая реальная термодинамическая система не будет изолированной хотя бы потому, что ее невозможно окру­жить оболочкой, не проводящей теплоту. Изолированную систе­му можно рассматривать как удобную термодинамическую мо­дель. Схематически равновесное состояние изолированной систе­мы показано на рис. 10.1, б.

Рассмотрим подробнее взаимодействие закрытой системы с ок­ружающими телами. Обмен энергией между ними может осу­ществляться в двух различных процессах при совершении работы и при теплообмене.

Мерой передачи энергии в процессе теплообмена является количество теплоты, а мерой передачи энергии в процессе соверше­ния работы является работа[1][1][1].

Найдем выражение для вычисле­ния работы, совершаемой газом при изменении его объема. Предположим, что газ, находящийся в цилиндриче­ском сосуде под поршнем, изобарно расширяется от V1 до V2 (рис. 10.2), при этом поршень перемещается на расстояние ∆l = l2 – l1, а объем изменя­ется на AV = V2-V1

На поршень, площадь поперечногосечения которого S, со стороны газа вследствие давления р действует сила F = pS. Так как направле­ние этой силы совпадает с направлением перемещения поршня, то работа, совершаемая газом,

При расширении газа AF > 0 и работа положительна (∆V > 0); при сжатии ∆V < 0 и А < 0. Заметим, что речь идет о работе, совер­шаемой газом, а не внешними силами. Работа всех внешних сил, наоборот, при расширении газа окажется отрицательной, а при сжатии — положительной.

Если при изменении объема давление газа изменяется, то сле­дует вычислять элементарную работу, соответствующую доста­точно малому изменению объема dV:

dA=pdV (10.2)

 
 

Проинтегрировав (10.2), получим работу, совершаемую газом:

 

 
 

В качестве примера найдем работу идеального газа при изотер­мическом процессе. Для этого подставим в формулу (10.3) вместо давления его выражение из уравнения Менделеева — Клапейрона:

 
 

Получим

Здесь m — масса газа, М — молярная масса (масса моля), Т — термодинамическая температура, Д = 8,31 Дж/(моль • К) — мо­лярная газовая постоянная.

Из уравнения (10.3) ясно, что работа, совершаемая газом, гра­фически определяется как площадь криволинейной трапеции в координатах давление — объем (рис. 10.3). Из рисунка, на кото­ром представлены графики двух различных процессов с одинако­вым начальным и конечным состояниями, видно, что работа зави­сит от процесса. Так, работа А1 (рис. 10.3, а) больше, чем работа А2 (рис. 10.3, б).

 
 

Закон сохранения энергии для тепловых процессов формули­руется как первое начало термодинамики. Количество тепло­ты, переданное системе, идет на изменение внутренней энер­гии системы и совершение системой работы:

Под внутренней энергией системы понимают сумму кинети­ческой и потенциальной энергий частиц, из которых состоит сис­тема.

Внутренняя энергия U является функцией состояния системы и для данного состояния имеет вполне определенное значение; ∆U есть разность двух значений внутренней энергии, соответствую­щих конечному и начальному состояниям системы: ∆U = U2 — U1

Количество теплоты Q, как и работа, является функцией про­цесса, а не состояния. И количество теплоты, и работу нельзя вы­разить в виде разности двух значений какого-либо параметра в конечном и начальном состояниях. В связи с этим Q и А в (10.6) записаны без знака приращения ∆.

Для достаточно малых значений Q, А и малых приращений U используют соответственно обозначения δQ, δА и dU, подчерки­вая этим отличие понятий количества теплоты и работы от внут­ренней энергии.

Ради упрощения в дальнейшем используются одинаковые обо­значения (dQ, dA и dU), однако следует помнить различие этих

 
 

физических величин. С учетом изложенного первое начало термо­динамики можно записать в виде:

 

Значения Q, A, ∆U и dQ, dA, dU могут быть как положительными (теплота передается системе внешними телами, внутренняя энер­гия увеличивается, газ расширяется), так и отрицательными (теплота отнимается от системы, внутренняя энергия уменьшает­ся, газ сжимается).

 







Дата добавления: 2015-08-30; просмотров: 2750. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия