Студопедия — Преобразование сигналов в рецепторах
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование сигналов в рецепторах






Практически все сенсорные приборы между раздражителем и рецептирующим субстратом имеют вспомогательные структуры. Все они существенно изменяют характеристики раздражающих воздействий, обеспечивают лучшее восприятие стимулов и поэтому играют важную роль в деятельности сенсорных систем.

Вспомогательные структуры могут быть очень сложными, как, например, ухо или глаз, или более простыми — тактильные рецепторы в коже.

Этапы рецепторного акта в первичных и вторичных рецепторах. Через вспомогательные структуры внешний стимул доходит до рецептирующего субстрата, определяющего модальность рецептора, и взаимодействует с ним. Этот первый этап специфического взаимодействия между стимулом и специальны­ми рецепторами на молекулярном уровне еще недостаточно изучен: рецепторные участки очень малы, часто труднодоступны для исследования, а сами процессы взаимодействия протекают чрезвычайно быстро. Однако каковы бы ни были эти механизмы, следствием их является изменение проницаемости плазматической мембраны рецептора.

В качестве второго этапа рецепторного акта в рецепторе рассматривают изменение мембранной проницаемости. Вследствие этого происходит возникно­вение ионного тока через мембрану (в основном для ионов Na+, а также и для других ионов), создающего на ней локальный электрический потенциал. В ре­зультате мембранный потенциал, величина которого составляет —70 мВ, сме­щается в направлении равновесного потенциала, примерно равного 0. Это изменение мембранного потенциала рецепторной клетки, возникающее под воздействием раздражителя, называется рецепторным потенциалом (РП). А. Ходжкин и А. Хаксли доказали, что проницаемость мембраны для каждого иона обусловлена специальными каналами, позволяющими данному иону сво­бодно проходить через мембрану по градиенту концентрации (см. разд. 1.1). Многие исследователи, работающие в данной области, представляют себе такие каналы, как поры в мембране.

В случае деполяризации мембраны рецептора происходит увеличение про­ницаемости каналов мембраны для ионов, тогда как при гиперполяризации — закрытие этих каналов. Важно подчеркнуть, что проницаемость мембраны изменяется лишь в той ее точке, где произошло взаимодействие стимула с рецептирующим субстратом. Именно здесь и развивается РП.

Во время возникновения РП внутрь рецепторной клетки входит положи­тельный ток, создаваемый ионами Na+ или Са2+. Для того чтобы цепь была замкнута, ток должен выходить через мембрану наружу. Однако, так как выход его через тот же участок, где находится вход, невозможен, ток пассивно распространяется вдоль волокна и выходит из последнего в области наимень­шего сопротивления. Расстояние, на которое распространяется этот ток по волокну рецептора, определяют три фактора: сопротивление цитоплазмы, со­противление клеточной мембраны и диаметр дендрита. Чем меньше сопротив­ления цитоплазмы и чем больше диаметр дендрита, тем легче и дальше ток распространяется через внутреннюю среду рецепторной клетки.

Распространение электрического тока, зависящее от постоянного сопротив­ления и емкости мембраны, называется электротоном. Поэтому пассивное распространение РП вдоль нервного волокна называют электротоническим. Электротоническое распространение РП через дендриты и тело клетки к аксону является третьим этапом рецепторного акта.

 

Последний, четвертый, этап на рецепторном уровне состоит в перекодировании переданного электрического ответа рецептора в импульсный разряд, или потенциал действия (ПД), в афферентном нервном волокне, который несет в себе информацию для остальных отделов нервной системы.

Потенциалы действия, или нервные импульсы, появляются, когда деполяризующее действие локальных ионных токов достигает некоторого критического уровня в зоне, наиболее приспособленной к возникновению спайков. Их величина составляет +55 мВ. Возникнув, нервные импульсы пробегают в форме волны по нервному волокну. В состоянии же покоя все части поверхностной мембраны поляризованы в равной мере и по аксоплазме или по окружающему ее жидкому внеклеточному проводнику электрический ток не течет. Но изменивший полярность мембранный потенциал активной области (т. е. там, где возникает нервный импульс) создает градиент с уклоном по направлению к участкам нерва, находящимся в покое, и тем самым создает ток. Ток заставляет потенциал этого участка мембраны смещаться в положительную сторону, начиная новый цикл активации.

Таким образом, импульс распространяется от одной точки к другой быстро и непрерывно. Потенциалы действия проводятся по аксону в центростремительном направлении (т. е. ортодромно (от греч. orthos — прямой и dromos — бег), но одновременно электротонически распространяются по телу клетки и ее дендритам антидромно (от греч. antidromeo —бежать в противоположном направлении). Поэтому если установить электрод в теле рецепторной клетки, то будут одновременно регистрироваться и РП, и ПД.

Чаще всего ПД возникает у основания аксона, но возможно его появление и внутри тела клетки, и в нервном волокне. Потенциал действия распространяется по аксону активно, что обусловлено регенеративными механизмами, т. е. самоусилением натриевой проходимости.

Представленные этапы преобразования раздражителя в нервные импульсы относятся к свободным нервным окончаниям и первично—чувствующим рецепторам, в которых возникновение РП и ПД происходит в одном и том же сенсорном нейроне (рис. 4.2).

Рис. 4.2. Возникновение электрических потенциалов в первичных (А) и вторичных (Б) рецепторах 1, Г — апикальные отростки специальных клеток (обонятельной и вкусовой), 2, 2' — тела специальных клеток, 3 — синапс между специальной клеткой и нервным волокном вторичночувствующего рецептора, 4 — центральный отросток специальной клетки первичночувствующего рецептора (афферентное волокно), 4' — периферический отросток чувствительного нейрона, тело которого расположено на некотором удалении от рецептора (афферентное волокно вторичночувствующего рецептора); / — действие стимула, // — развитие рецепторных потенциалов в рецепторах;.III — развитие генераторного потенциала на постсинаптической мембране вторичночувствующего рецептора,IV — образование потенциалов действия в афферентных волокнах.

 

Во вторичночувствующих рецепторах РП сам по себе не может быть источником генерации распространяющегося ПД, так как на пресинаптической мембране специализированной рецептирующей клетки отсутствуют электрогенные участки. Поэтому у вторичных рецепторов место протекания специфических трансформационных явлений и область генерации нервных импульсов находятся в разных клетках и сам рецепторный акт протекает сложнее чем в первичных рецепторах.

В нем можно выделить дополнительно несколько звеньев: 1) электротоническое распространение РП от места его возникновения к пресинаптической мембране рецептирующей клетки; 2) выделение там медиатора (например ацетилхолина) под действием РП в синаптическую щель; 3) возникновение возбудительного постсинаптического потенциала (ВПСП) на мембране контактирующего с рецепторной клеткой нервного окончания под действием медиатора—4) электротоническое распространение ВПСП с постсинаптичёской мембраны на участки волокна, обладающие электрогенными свойствами; 5) электрогенные участки мембраны нервного волокна генерируют ПД, распространяющиеся вдоль всего этого волокна и достигающие ЦНС.

Таким образом, во вторичных рецепторах местные потенциалы образуются дважды в течение одного рецепторного акта: РП рецептирующей клетки и ВПСП нервного волокна.

Для того чтобы избежать терминологической путаницы, было предложено называть градуальный электрический ответ рецептирующей клетки рецепторным потенциалом (РП), а постсинаптический потенциал связанного с нею через синапс нервного волокна — генераторным потенциалом (ГП) имея в виду, что он генерирует в нервном волокне потенциалы действия. В первичных рецепторах РП, являясь источником ПД, по существу выполняет функцию генераторного потенциала. Все представленное выше можно изложить в виде схемы рецепторного акта.

Для первичночувствующих рецепторов, этапы: I — специфическое взаимодействие раздражителя с мембраной рецептора на молекулярном уровне— II — возникновение РП в месте взаимодействия стимула с рецептором (следствие изменения проницаемости мембраны рецептора); III — электротоническое распространение РП к аксону сенсорного нейрона; IV — генерация ПД; V — проведение ПД по нервному волокну в ортодромном направлении.

Для вторичночувствующих рецепторов: I—III этапы совпадают с аналогичными этапами первичночувствующих рецепторов, но протекают в специализированной рецептирующей клетке и заканчиваются на ее пресинаптической мембране, IV этап — выделение медиатора пресинаптическими структурами, V— возникновение ГП на постсинаптичёской мембране нервного волокна VI— электротоническое распространение ГП по нервному волокну VII — генерация ПД электрогенными участками этого волокна; VIII — проведение ПД по нервному волокну в ортодромном направлении.

Данную схему рецепторного акта в основном принимает большинство исследователей, но некоторые ее детали пока еще недостаточно обоснованы экспериментально.

Основные свойства рецепторного потенциала и потенциалов действия. Систематические исследования функционирования рецепторов (с помощью электрофизиологических методов) стали проводиться с начала XX в., но и по сей день первичные трансформационные процессы, протекающие в различных рецепторах остаются малоизученными. Основные работы в этом направлении были выполнены на первичных механорецепторах (мышечные веретена, рецепторы растяжения ракообразных, тельца Пачини) и фоторецепторах беспозвоночных. Именно в этих исследованиях и были выяснены наиболее важные свойства РП и ОД.

Прежде всего следует подчеркнуть, что РП является градуальным и его амплитуда зависит от интенсивности стимула. Для многих рецепторов установлена логарифмическая зависимость между силой раздражителя и амплитудой РП. Однако встречаются рецепторы, кривая зависимости амплитуды локальной деполяризации которых от величины воздействия носит 8—образный Характер В рецепторном потенциале обычно можно различить два компонента:

быстрый и медленный. Быстрый возникает в момент нанесения раздражения (оn—ответ), медленный в период его стационарного действия. Соотношение между ними, равно как и временное течение РП, определяется при прочих равных условиях адаптационными свойствами рецепторов.

Потенциал действия в отличие от РП развивается по правилу.все или ничего». Очень слабый стимул не вызывает ПД; для этого нужен стимул определенной минимальной (пороговой) силы. Однако на величину ПД, т. е. на его амплитуду сила стимула не влияет. Даже если удвоить или утроить силу надпорогового раздражителя, ПД будет оставаться прежним. Поэтому стимул либо вызовет полный ПД, либо совсем не вызовет его.

Во многих рецепторах временные параметры РП определяются в основном временными параметрами, стимула, т. е. этот потенциал существует в течение действия раздражителя. Однако в некоторых, быстро адаптирующихся рецепторах, таких как тельца Пачини, медленный компонент ответа практически отсутствует. Помимо динамической реакции рецептора на включение раздражителя (оn—ответ) часто возникает и динамический ответ на выключение воздействия (оff/ответ). Его возникновение в значительной степени обусловлено механическими свойствами вспомогательных структур и для телец Пачини зависит от упругих свойств многослойной капсулы рецептора. Длительность же ПД обусловлена прежде всего электрогенными и кабельными свойствами нервного волокна и не зависит от параметров стимула.

Рецепторный потенциал распространяется по нервному волокну пассивно электротоническим путем и с декрементом, т. е. амплитуда его постепенно понижается. Потенциал действия распространяется по аксону активно, что обусловлено регенеративными механизмами, т. е. самоусилением натриевой проводимости. Благодаря этому ПД обладает порогом возбуждения, создает короткую рефрактерность (т. е. невосприимчивость нерва к новому раздражению) и характеризуется постоянством амплитуды при распространении на большие расстояния. Такой способ проведения называется бездекрементным проведением и составляет главную особенность аксона, отличающую его, например, от пассивного проводника электрических сигналов.

Таким образом, наиболее отличительными чертами РП по сравнению с потенциалами действия являются зависимость его параметров (амплитуды, длительности, скорости нарастания и спадения и т. д.) от различных характеристик раздражающего воздействия, а также декрементный характер распространения.

Спонтанная активность рецепторов. Для многих рецепторных структур, например таких, как волосковые механорецепторы, некоторые хемо— и электрорецепторы и др., характерно наличие фоновой, или спонтанной, активности. Она, по—видимому, связана с флуктуационными изменениями мембранного потенциала, спонтанно происходящими в рецепторных клетках, что находит свое отражение в колебаниях амплитуды РП и генерации ПД при отсутствии стимуляции. На первый взгляд это может показаться бесполезным, но в действительности дает ряд важных преимуществ перед рецепторами, не обладающими фоновой активностью. Главное из них состоит в повышении чувствительности рецептора. Очень слабый стимул, который сам по себе не может вызвать деполя­ризацию, повышает частоту импульсных разрядов. Это означает, что не суще­ствует подпорогового стимула: любое малое его усиление меняет частоту разряда.

Другое преимущество спонтанной активности рецептора заключается в воз­можности кодировать изменения в обоих направлениях, в сторону усиления импульсации и в сторону ее уменьшения.

Таким образом, спонтанная активность не только обеспечивает высокую чувствительность, но и позволяет определять, в каком направлении изменяется стимул.

Чрезвычайно низкие пороги возникновения возбуждения, существующие практически у всех высокоорганизованных рецепторов, а также наличие спонтан­ной активности у многих из них заставляют предполагать стационарное неустой­чивое состояние всех возбудимых систем этих сенсорных образований.







Дата добавления: 2015-08-31; просмотров: 959. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия