Студопедия — Зависимость теплоёмкости от размеров структурных составляющих материалов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимость теплоёмкости от размеров структурных составляющих материалов






Тепловое движение атомов решётки сводится к их колебательному движению около некоторого положения равновесия. Согласно теории Дебая, число типов колебаний кристалла равно числу атомов N, а общее число колебаний трёхмерного тела равно 3N, что соответствует трём степеням свободы на каждое колебание. В соответствии с этим допущением должно выполняться соотношение:

где ν – число колебаний; g(ν) – плотность колебательных состояний; g(ν)dν - число колебаний с частотой от ν+dν; νmaх – максимальная частота колебаний кристаллической решётки, определяемая из условий равенства полного числа колебаний числу колебательных степеней свободы решётки.

В нанокристаллах могут возникать волны, длина которых не превышает удвоенный размер частицы d. Поэтому со стороны низких частот колебательный спектр наноматериалов, в отличие от крупнокристаллических, ограничен некоторой минимальной частотой νmin ~ c/2d, где с – скорость света. Таким образом, общее число колебаний для частицы, содержащей N атомов, равно:

Численная величина νmin зависит от свойств вещества, формы и размеров частицы.

Теоретические исследования показали, что функция распределения частот g(ν) малой частицы прямоугольной формы определяется выражением:

g(ν) = a12 + a2Sν + a3L (1)

где V, S, L – объём, площадь поверхности и общая длина рёбер наночастицы, соответственно; а1, а2, а3 – некоторые коэффициенты.

Согласно теории Дебая теплоёмкость Сv крупнокристаллического твёрдого тела при условии hν < kBT, соответствует низким значениям абсолютной температуры Т и определяется выражением:

Сv = вVT3 (2)

где V – объём тела; в – некоторый коэффициент.

С учётом уравнения (1) выражение для теплоёмкости наночастицы преобразуется к виду

Сv(r) = в13 + в22 + в3Т (3)

где в1, в2, в3 – некоторые коэффициенты.

Если принять, что νmaх в наноматериалах совпадает с максимальной частотой колебаний решётки массивного кристалла, то первый член в уравнении (3) представляет собой дебаевский вклад в теплоёмкость, согласно уравнению (2). В случае наночастиц в выражении для теплоёмкости присутствуют также вклады второго и третьего слагаемых, обусловленные большой поверхностью. Таким образом, из формулы (3) следует, что при hνmах < kBT теплоёмкость наночастицы Сv(r) больше теплоёмкости Сv крупнокристаллического материала.

Аналогичные результаты даёт квантовый подход при определении размерной зависимости теплоёмкости.

Интервал температур, в котором колебания решётки следует рассматривать на основе квантовых представлений, весьма узкий. Температура вырождения, при которой в идеальном газе начинают проявляться квантовые эффекты, определяется выражением:

Тв = (h2/mk)(N/V)2/3

где m – масса; N – число атомов; V – объём системы.

Подстановка числовых значений для протонов даёт значение температуры вырождения порядка 10 К. Таким образом, квантовомеханическое исследование колебаний решётки необходимо при Т < 10 К. При более высоких температурах решётку можно рассматривать с классических позиций.

В квантовом приближении для сферической частицы радиусом r, содержащей N атомов, общее число колебаний равно:

N = (2/9π)r3kд3 + (1/4π)r2kд2 + (2/3π)rkд (4)

где kд – волновой вектор, соответствующий максимальной частоте колебаний νmaх = kдс/2π, с – скорость света.

Волновой вектор – вектор, определяющий направление распространения и пространственный период плоской монохроматической волны. Модуль волнового вектора называется волновым числом k. Волновое число определяет пространственный период волны или длину волны λ: k = 2π/λ.

Слагаемые в правой части уравнения (4) учитывают объёмный, поверхностный и линейный вклады, соответственно. С учётом этого уравнения выражение для теплоёмкости кристалла радиуса (r) для области температур hνmin < kBT приобретает вид:

Сv(r) = Сv + k1Т2/r + k2Т/r2 (5)

где Сv – теплоёмкость крупнокристаллического материала; k1, k2 – некоторые коэффициенты.

При увеличении размера частицы, когда r → ∞, второй и третий члены в уравнении (5) обращаются в нули. Соответственно исчезает разность между теплоёмкостями нано- и крупнокристаллического материала Сv(r) – Сv → 0.

Согласно теоретическим оценкам, в области низких температур при Т → 0 теплоёмкость Сv(r) убывает быстрее, чем теплоёмкость крупнокристаллического материала Сv. Поэтому в области низких температур ∆С = Сv(r) – Сv < 0. Это означает, что существует некоторая температура Т0, ниже которой ∆С < 0. При Т > Т0 эта разность становится больше нуля (рис. 1). При высоких температурах теплоёмкость стремится к предельному значению, определённому законом Дюлонга-Пти: Сv → 3R.

Для наночастиц серебра измерения теплоёмкости обнаружили квантовый размерный эффект: при Т < 1 К теплоёмкость наночастиц была







Дата добавления: 2015-08-17; просмотров: 600. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия