Студопедия — Космос как голограмма
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Космос как голограмма






Нельзя не оценить героическую решимость Бома в его усилиях разорвать путы научных догм. Он оказался в совершенном одиночестве со своей новой идеей, которую между тем характеризует как внутренняя согласованность, так и логическая мощь, что и оборачивается ее способностью в совершенно неожиданном контексте представить и истолковать широчайший круг физических явлений. Его теория оказалась настолько притягательной, что многие почувствовали: вселенная не может быть иной, нежели ее описал Бом

Джон Бриггс и Дэвид Пит. «Зеркальная вселенная»

Путь, приведший Бома к уверенности в том, что вселенная структурирована наподобие голограммы, начинался у самого истока представлений о материи, с мира элементарных частиц. Его интерес к науке и природе вещей проявился довольно рано. Будучи еще юношей, он изобрел чайник, не проливающий мимо ни капли воды, после чего его отец, преуспевающий бизнесмен, уговорил его попытаться заработать на этой идее. Но после того, как Бом узнал, что первым делом надо произвести анализ рынка путем опроса горожан, его интерес к бизнесу сильно померк [1].

Напротив, его интерес к науке продолжал возрастать, а его неординарная пытливость приводила к новым, неизвестным ранее высотам. Более всего его увлекла квантовая физика, когда в 30-е годы он посещал государственный колледж штата Пенсильвания. Очарование этой области физики легко понять. Странные новые континенты, обнаруженные физиками в глубинах атома, содержали намного больше чудес, чем открытия Кортеса или Марко Поло вместе взятые. Этот новый мир был интригующим, прежде всего потому, что все в нем противоречило здравому смыслу. Он больше напоминал волшебную страну, нежели продолжение естественного мира, обитель Алисы в Стране Чудес, в которой появление таинственных сил было нормой, а вся логика была поставлена с ног на голову.

Одно из поразительных открытий, к которому пришли физики-атомщики, заключалось в том, что если разбивать материю на все более мелкие части, то можно в конце концов достичь предела, за которым эти части – электроны, протоны и т. д. – не обладают более признаками объекта. Например, большинство из нас представляет себе электрон в виде вращающейся маленькой сферы или мячика, но нет ничего более далекого от истины. Хотя электрон иногда может вести себя как сосредоточенная небольшая частица, физики обнаружили, что он в буквальном смысле не обладает протяженностью. Большинству из нас это трудно себе представить, поскольку все на нашем уровне существования имеет протяженность. И тем не менее, если вы попытаетесь измерить ширину электрона, вы столкнетесь с неразрешимой задачей. Просто электрон не является объектом, в том смысле, который мы ему приписываем.

Еще одно важное открытие, сделанное физиками, состоит в том, что электрон может проявлять себя и как частица, и как волна. Если выстрелить электроном в экран выключенного телевизора, можно увидеть маленькую световую точку на экране. Появившийся на фосфоресцирующем слое след, оставляемый электроном, ясно свидетельствует о сходной с частицей природе электрона. Но это не единственная форма, которую может принимать электрон; он также может растворяться в энергетическое пятно и вести себя словно распределенная в пространстве волна. Он может делать то, чего не делает частица. Если им выстрелить в экран с двумя микроскопическими отверстиями, он пройдет сквозь оба отверстия одновременно. Когда волнообразные электроны соударяются, они образуют интерференционные картины. Электрон, как сказочный оборотень, может проявляться и как частица, и как волна.

Такое изменчивое поведение присуще всем элементарным частицам. Оно также характерно для всех явлений, ранее считавшихся чисто волновыми. Свет, гамма-лучи, радиоволны, рентгеновские лучи – все они могут превращаться из волны в частицу и обратно. Сегодня физики рассматривают такие внутриатомные явления не в рамках отдельных категорий волн или частиц, а как единую категорию, обладающую сразу двумя свойствами.

Такие внутриатомные явления были названы квантами[11], то есть мельчайшими частицами, из которых, по мнению физиков, сотворена Вселенная.

Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы смотрим на них. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения. (Здесь следует отметить, что это лишь одно из возможных следствий такого рода экспериментов, а не общее мнение всех физиков, как будет ясно из дальнейшего. Сам Бом дает результатам этих экспериментов другое объяснение.)

Еще раз отметим: такое поведение материи представляется более загадочным, нежели то, к которому мы привыкли в окружающем нас мире. Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он оставлял бы прямой след только в тех местах, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал бы чертить прямую линию и оставлял бы широкий волнистый след, наподобие зигзагообразного следа, который оставляет змея на песке пустыни.

В современной физике найдено убедительное доказательство того, что электроны и другие «кванты» проявляют себя как частицы только при условии, что мы наблюдаем за ними. В другое время они ведут себя как волны.

С такой же ситуацией столкнулись физики-атомщики, когда впервые наблюдали процесс собирания квантов в частицы.

Физик Ник Герберт, поддерживающий эту теорию, говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен, и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа», и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который никогда не испытал мягкость шелка в ответ на прикосновение человеческой руки, поскольку все, к чему он прикасался, тотчас превращалось в золото.

«Человеческому постижению недоступна истинная природа "квантовой реальности", – говорит Герберт, – поскольку все, к чему бы мы ни прикоснулись, превращается в материю»[2].







Дата добавления: 2015-08-17; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия