Студопедия — Окончание таблицы 5.1
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Окончание таблицы 5.1






 

 

 

Они широко применяются в промышленности для инициирования эмульсионной и растворной полимеризации.

Для правильного выбора инициатора полимеризации необходимо располагать данными, характеризующими скорость его распада при температуре реакции. Наиболее универсальной характеристикой является период полураспада инициатора 1/2, значения которого для многих инициаторов приведено в табл. 5.1. Обычно для инициирования полимеризации используют инициаторы, период полураспада которых соизмерим с продолжительностью процесса. Поскольку для реакций первого порядка 1/2 = ln2/kрасп, то, зная величину 1/2, можно рассчитать концентрацию инициатора в любой момент полимеризации в соответствии с уравнением:

 

 

где kрасп - константа скорости мономолекулярной реакции распада инициатора; [I0] и [I] - начальная и текущая концентрации инициатора.

Фотохимическое инициирование. При облучении мономера УФ-светом молекулы, поглотившие квант света, возбуждаются и затем распадаются на радикалы, способные инициировать полимеризацию:

 

M+hv→M*→R1+R2.

 

Однако прямое облучение мономера малоэффективно, поскольку кварцевое стекло обычно не пропускает УФ-свет в области, соответствующей его поглощению мономером (π-π*-переход, 200-220 нм), или пропускает его в незначительной степени.

В том случае, когда мономер не поглощает прошедший свет, необходимо использовать фотосенсибилизатор (Z) - соединение, передающее энергию возбуждения другим молекулам:

 

Z+hv→Z*,

Z*+М→Z+М*→R1+R2+Z.

 

Применение в качестве фотосенсибилизаторов красителей позволяет использовать для фотоинициирования видимую область света.

В практических целях фотополимеризация обычно проводится в присутствии фотоинициаторов - веществ, распадающихся в требуемой области УФ-спектра с достаточно высоким квантовым выходом. В качестве фотоинициаторов могут быть использованы некоторые термические инициаторы, например, пероксиды или азосоединения, а также другие соединения. Наиболее эффективными фотоинициаторами являются ароматические кетоны и их производные, благодаря достаточно широкой области поглощения УФ-спектра и высокому квантовому выходу радикалов. Считается, что ароматические кетоны претерпевают фотохимическое превращение по двум направлениям:

 

 

последнее из которых реализуется лишь в присутствии доноров водорода.

В промышленности в качестве фотоинициаторов используют бензоин (1), бензилкеталь (2) и их многочисленные производные:

 

 

Фотополимеризация используется для нанесения полимерных покрытий непрерывным способом на металл, дерево, керамику, световоды, в стоматологии для отверждения композиций зубных пломб. Особенно следует отметить применение фотополимеризации в фотолитографии, с помощью которой изготавливают большие интегральные схемы в микроэлектронике, а также печатные платы (матрицы) в современной технологии фотонабора, позволяющей исключить использование свинца.

Существенным недостатком фотоинициирования является быстрое падение его эффективности с увеличением толщины облучаемого слоя вследствие поглощения излучения. По этой причине фотохимическое инициирование эффективно при возбуждении полимеризации в достаточно тонких слоях, порядка нескольких миллиметров.

Радиохимическое инициирование. Излучение радиоактивных источников Со60, а также различного рода ускорителей включает набор частиц, таких как α-частицы, нейтроны, электроны и жесткое электромагнитное излучение. В отличие от фотоизлучения радиоактивное является ионизирующим и обладает гораздо большей проникающей способностью, что объясняется большей энергией его частиц.

Ионизация облучаемого вещества является следствием выбивания электронов из его молекул, например мономера, частицами высокой энергии:

 

М+излучение→М+•+е-.

 

Радикалы, способные инициировать полимеризацию, возникают в результате дальнейших превращений в системе с участием возбужденных ионов, ионрадикалов и электронов, например:

 

 

Наличие в облученном мономере свободных радикалов и ионов предопределяет возможность развития как радикальной, так и ионной полимеризации. В большинстве случаев результатом является радикальная полимеризация, однако, при низкой температуре в отсутствие воды и других примесей, дезактивирующих ионы, удалось наблюдать как катионную, так и анионную полимеризацию отдельных мономеров.

Термическое инициирование. Имеется очень мало примеров термического инициирования полимеризации. К ним относятся, прежде всего, спонтанная полимеризация стирола и винилпиридинов. Считается, что механизм возникновения свободных радикалов при термическом инициировании является бимолекулярным, но достаточно надежно он выявлен лишь по отношению к стиролу. Первой стадией реакции является образование аддукта Дильса-Альдера из двух молекул стирола:

 

 

На второй стадии имеет место перенос атома водорода от аддукта к молекуле стирола, что и приводит к возникновению радикалов, способных инициировать полимеризацию:

 

 

В большинстве других случаев спонтанная термическая полимеризация обусловлена инициированием перекисями, которые легко образуются на свету даже при кратковременном контакте мономеров с кислородом воздуха.

Эффективность инициирования. Эффективность инициирования ƒ равна доле радикалов, инициирующих полимеризацию, от их общего числа, которое соответствует спонтанному распаду определенного количества инициатора. Обычно 0,3 < ƒ < 0,8, т.е. заметно меньше единицы. Это объясняется двумя причинами - индуцированным распадом инициатора и побочными реакциями в «клетке».

Индуцированный распад инициатора происходит в результате его реакции с радикалом роста, т. е. в результате передачи цепи на инициатор, которая будет рассмотрена далее. Из схемы реакции видно, что она приводит к уменьшению числа радикалов распавшегося пероксида, инициирующих полимеризацию:

 

 

Эффект «клетки» заключается в том, что два радикала, образовавшиеся в результате распада инициатора, в рассматриваемом случае пероксида бензоила не могут в течение некоторого времени разойтись, поскольку их диффузии препятствуют окружающие молекулы мономера и растворителя. Этот момент весьма благоприятен для протекания побочных реакций, приводящих к их дезактивации. Одна из них приведена ниже (радикалы в «клетке» обозначены скобками):

 

 

Первичные бензоатные радикалы покидают «клетку» путем диффузии и в результате реакции с мономером. Далее они могут декарбоксилироваться

 

 

в результате чего реакция с мономером (инициирование) осуществляется с участием как бензоатных, так и фенильных радикалов:

 

 

К побочным реакциям, снижающим эффективность инициирования, помимо приведенной выше реакции в «клетке», относятся следующие две реакции:

 

 

В общем случае эффективность инициирования определяется природой инициатора, мономера, растворителя и конверсией. Большое значение имеет микровязкость среды, т.е. вязкость мономера или смеси мономер-растворитель. Она определяет подвижность «клетки»: с ее увеличением выход радикалов из «клетки» затрудняется, и эффективность инициирования падает. Еще в большей степени уменьшается эффективность инициирования с увеличением конверсии, т.е. доли мономера, превратившегося в полимер.

 







Дата добавления: 2015-08-17; просмотров: 739. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2024 год . (0.029 сек.) русская версия | украинская версия