Студопедия — Ультразвуковая диагностика патологии сосудистой системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ультразвуковая диагностика патологии сосудистой системы

 

Содержание

[убрать]

· 1 Физические основы

· 2 Составляющие системы ультразвуковой диагностики

o 2.1 Генератор ультразвуковых волн

o 2.2 Ультразвуковой датчик

§ 2.2.1 Виды датчиков

§ 2.2.1.1 Линейные датчики

§ 2.2.1.2 Конвексные датчики

§ 2.2.1.3 Секторные датчики

· 3 Методики ультразвукового исследования

· 4 Допплерография

o 4.1 Потоковая спектральная допплерография (ПСД)

o 4.2 Непрерывная (постоянноволновая) ПСД

o 4.3 Импульсная ПСД

o 4.4 Цветовое допплеровское картирование (ЦДК)

o 4.5 Энергетическая допплерография (ЭД)

o 4.6 Комбинированные варианты

o 4.7 Трёхмерное допплеровское картирование и трёхмерная ЭД

· 5 Эхоконтрастирование

o 5.1 Динамическая эхоконтрастная ангиография

o 5.2 Тканевое эхоконтрастирование

· 6 Применение в медицине

o 6.1 Терапевтическое применение ультразвука в медицине

§ 6.1.1 Опасность и побочные эффекты

o 6.2 Эхоэнцефалография

o 6.3 Офтальмология

o 6.4 Внутренние болезни

§ 6.4.1 Печень

§ 6.4.2 Жёлчный пузырь и желчные протоки

§ 6.4.3 Поджелудочная железа

§ 6.4.4 Почки и надпочечники, забрюшинное пространство

§ 6.4.5 Щитовидная железа

o 6.5 Кардиология, сосудистая и кардиохирургия

o 6.6 Акушерство, гинекология и пренатальная диагностика

· 7 Аппарат ультразвуковой диагностики

o 7.1 Классификация аппаратов УЗИ

o 7.2 Термины, понятия, сокращения

· 8 См. также

· 9 Примечания

Физические основы[править | править исходный текст]

Физическая основа УЗИ — пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварц, титанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды — прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда, в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.

Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания — временем, за которое молекула (частица) совершает одно полное колебание;частотой — числом колебаний в единицу времени; длиной — расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости распространения звуковых волн. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая — отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.[2]

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиентперепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 — 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики[править | править исходный текст]

Генератор ультразвуковых волн [править | править исходный текст]

Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик [править | править исходный текст]

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков [править | править исходный текст]

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики [править | править исходный текст]

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур — щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики [править | править исходный текст]

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов — органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики [править | править исходный текст]

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография — исследование сердца.

Методики ультразвукового исследования[править | править исходный текст]

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная — чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

· A-режим. Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.

· B-режим. Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.

· M-режим. Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной — время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.

Допплерография[править | править исходный текст]

Основная статья: Допплерография

Спектральная допплерография сонной артерии

Увеличенный компьютеромтранскраниальная допплерография

Методика основана на использовании эффекта Допплера. Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур — если движение направлено в сторону датчика, то частота увеличивается, если от датчика — уменьшается.

Потоковая спектральная допплерография (ПСД) [править | править исходный текст]

Предназначена для оценки кровотока в относительно крупных сосудах и камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной — время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси — от датчика. Помимо скорости и направления кровотока, по виду допплеровской спектрограммы можно определить характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный — широкой неоднородной кривой.

Непрерывная (постоянноволновая) ПСД [править | править исходный текст]

Методика основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на пути ультразвукового луча в пределах глубины его проникновения. Недостаток: невозможность изолированного анализа потоков в строго определенном месте. Достоинства: допускает измерение больших скоростей потоков крови.

Импульсная ПСД [править | править исходный текст]

Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.

Цветовое допплеровское картирование (ЦДК) [править | править исходный текст]

Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий — от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки — высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.

Энергетическая допплерография (ЭД) [править | править исходный текст]

Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока.

Комбинированные варианты [править | править исходный текст]

Применяются также и комбинированные варианты, в частности:

· ЦДК+ЭД — конвергентная цветовая допплерография

· B-режим УЗИ + ПСД (или ЭД) — дуплексное исследование

Трёхмерное допплеровское картирование и трёхмерная ЭД [править | править исходный текст]

Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения. После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное[ неизвестный термин ] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).

Эхоконтрастирование[править | править исходный текст]

Методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки газа (диаметром менее 5 мкм при их циркуляции не менее 5 минут). Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью принтера.

В клинической практике методика используется в двух направлениях.

Динамическая эхоконтрастная ангиография [править | править исходный текст]

Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

Тканевое эхоконтрастирование [править | править исходный текст]

Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.[3]

Применение в медицине[править | править исходный текст]

Терапевтическое применение ультразвука в медицине [править | править исходный текст]

Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

· противовоспалительным, рассасывающим

· анальгезирующим, спазмолитическим

· кавитационным усилением проницаемости кожи

Фонофорез — сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно — ионов минералов бишофита.[4] Удобство ультрафонофореза медикаментов и природных веществ:

· лечебное вещество при введении ультразвуком не разрушается

· синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела — 0,2-0,4 Вт/см2, в области грудного и поясничного отдела — 0,4-0,6 Вт/см2).

Опасность и побочные эффекты [править | править исходный текст]

Ультразвуковое исследование в целом считается безопасным способом получения информации.[5]

Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА-принципу.

Отчёт 875 Всемирной организации здравоохранения за 1998 г.[6] поддерживает мнение, что ультразвук безвреден: «Диагностическое ультразвуковое исследование плода признаётся безопасным, эффективным и в высокой степени гибким способом получением изображения, позволяющим выявить клинически существенную информацию о большинстве частей тела быстрым и рентабельным способом». Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

Эхоэнцефалография [править | править исходный текст]

Основная статья: Эхоэнцефалография

Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

Офтальмология [править | править исходный текст]

Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

Внутренние болезни [править | править исходный текст]

Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

· брюшная полость и забрюшинное пространство

· печень

· жёлчный пузырь и желчевыводящие пути

· поджелудочная железа

· селезёнка

· почки

· органы малого таза

· мочеточники

· мочевой пузырь

· предстательная железа

Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д.

В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

Печень [править | править исходный текст]

Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

Жёлчный пузырь и желчные протоки [править | править исходный текст]

Кроме самой печени оценивается состояние желчного пузыря и желчных протоков — исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

Поджелудочная железа [править | править исходный текст]

При исследовании поджелудочной железы оцениваются её размеры, форма, контуры, однородность паренхимы, наличие образований. Качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов.

Почки и надпочечники, забрюшинное пространство [править | править исходный текст]

Исследование забрюшинного пространства, почек и надпочечников является достаточно трудным для врача ввиду особенностей их расположения, сложности строения и многогранности и неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их количество, расположение, размер, форма, контуры, структура паренхимы и чашечно-лоханочной системы. УЗИ позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

Щитовидная железа [править | править исходный текст]

В исследовании щитовидной железы ультразвуковое исследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы.

Кардиология, сосудистая и кардиохирургия [править | править исходный текст]

Основная статья: Эхокардиография

Эхокардиография (ЭхоКГ) — это ультразвуковая диагностика заболеваний сердца. В этом исследовании оцениваются размеры сердца и его отдельных структур (желудочки, предсердия, межжелудочковая перегородка, толщина миокарда желудочков, предсердий и т. д.), наличие и объём жидкости в перикарде — «сердечной сорочке», состояние клапанов сердца. С помощью специальных расчетов и измерений Эхокардиография позволяет определить массу сердца, сократительную способность сердца — фракцию выброса и т. д. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

Акушерство, гинекология и пренатальная диагностика [править | править исходный текст]

Ультразвуковое исследование используется для изучения внутренних половых органов женщины, состояния беременной матки, анатомии и мониторинга внутриутробного развития плода.

Трёхмерное ультразвуковое исследование 29-недельного плода.

Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки, легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через неё крови, а через 9 — 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвукового исследования можно также определять количество зародышей или констатировать смерть плода.

Аппарат ультразвуковой диагностики[править | править исходный текст]

Аппарат ультразвуковой диагностики (УЗИ сканер) — прибор, предназначенный для получения информации о расположении, форме и структуре органов и тканей и измерения линейных размеров биологических объектов методом ультразвуковой локации.

Классификация аппаратов УЗИ [править | править исходный текст]

В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

· ЭТС — эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);

· ЭКС — эхокардиоскопы (приборы, предназначенные для исследования сердца);

· ЭЭС — эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);

· ЭОС — эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

· С — статические;

· Д — динамические;

· К — комбинированные.

Термины, понятия, сокращения [править | править исходный текст]

· Advanced 3D — расширенная программа трёхмерной реконструкции.

· ATO — автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.

· B-Flow — визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.

· Coded Contrast Imaging Option — режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.

· CodeScan — технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путем создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.

· Color doppler (CFM или CFA) — цветовой допплер (Color Doppler) — выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика — синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии — цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.

· DICOM — возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.

· Easy 3D — режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.

· M-mode (M-режим) — одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.

· MPEGvue — быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.

· Power doppler — энергетический допплер — качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток — отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.

· Smart Stress — расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.

· Tissue Harmonic Imaging (THI) — технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) — специализированный инструмент для диагностики и оценки сердечных дисфункций.

· Tissue Velocity Imaging' — тканевой допплер (Tissue Velocity Imaging или тканевая цветовая допплерография) — цветовое картирование движения тканей, применяется совместно с импульсным допплером в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.

· TruAccess — подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.

· TruSpeed — уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.

· Virtual Convex — расширенное конвексное изображение при использовании линейных и секторных датчиков.

· VScan — визуализация и квантификация движения миокарда.

· Импульсный допплер (PW, HFPW) — импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) — ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW — high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.

· Постоянно-волновой допплер — постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести




<== предыдущая лекция | следующая лекция ==>
Основные -vs- Advanced Configuration Checkboxs | Наклонные совмещенные преобразователи

Дата добавления: 2015-08-17; просмотров: 1068. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия