Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модели случайных сигналов и помех [2, 28].





Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовский случайный процесс, гауссовский шум.

Рис. 9.4.1. Телеграфный сигнал.

Телеграфный сигнал - это случайный процесс xk(t), пример которого приведен на рис. 9.4.1. Он представляет собой последовательность прямоугольных положительных и отрицательных импульсов со случайными длительностями и детерминированными значениями амплитуд ±c, причем перемены знака внутри любого интервала (t, t+t) происходят с интенсивностью a в случайные моменты времени, и не зависят от процессов в смежных временных интервалах. Если считать случайной величиной телеграфного сигнала значение n - количество перемен знака внутри интервала t, то распределение вероятностей значений n будет описываться законом Пуассона:

P(n) = (a|t|)2 exp(-a|t|)/n! (9.4.1)

Рис. 9.4.2. Функция корреляции сигнала.

При вычислении корреляционной функции телеграфного сигнала каждое отдельное произведение xk(t)xk(t+t) равно либо с2, либо -с2 в зависимости от совпадения или несовпадения знаков xk(t) и xk(t+t), причем вероятность с2 равна сумме вероятностей Р(0)+Р(2)+Р(4)+..., а вероятность -с2 определяется соответственно суммой вероятностей Р(1)+Р(3)+Р(5)+....

Следовательно:

Rx(t) = M{xk(t)xk(t+t)}= c2 (-1)n P(n) =

= c2 exp(-a|t|) (-1)n (a|t)n/n! = c2 exp(-2a|t|). (9.4.2)

Параметр a полностью определяет корреляционные и спектральные свойства телеграфного сигнала, приведенные на рис. 9.4.2-3. При a Þ 0 характеристики сигнала приближаются к характеристикам постоянной составляющей, при a Þ ¥ - к характеристикам белого шума.

Интервал корреляции сигнала:

Tk = 2 (Rx(t)/c2) dt = 2/a. (9.4.3)

Отсюда следует, что чем больше a, тем меньше время корреляции процесса. При a Þ 0 Tk Þ ¥ и процесс вырождается в детерминированный (стремится к постоянной составляющей). При a Þ ¥ Tk Þ 0 и процесс вырождается в белый шум с некоррелированными отсчетами даже на соседних временных точках.

Рис. 9.4.3. Спектр сигнала.

Двусторонняя спектральная плотность сигнала:

Sx(w)= Rx(t) exp(-jwt) dt=ac2/(a2+w2). (9.4.4)

Односторонняя спектральная плотность:

Gx(w) = 2ac2/(a2+w2). (9.4.5)

Ширина спектра телеграфного сигнала:

Bk = Gx(w) dw/Gx(0) = ap. (9.4.6)

Отсюда следует, что спектр случайного процесса тем шире, чем меньше интервал корреляции процесса.

Белый шум является стационарным случайным процессом x(t) с постоянной спектральной плотностью Gx(f) = s2, равной дисперсии значений x(t). Другими словами, все спектральные составляющие белого шума имеют одинаковую энергию (как белый цвет содержит все цвета видимого спектра).

По своему физическому смыслу спектральная плотность - это мощность процесса, которая приходится на 1 Гц полосы частот. Но тогда идеального белого шума на практике не может существовать, так как для него должно было бы выполняться условие:

Rx(0) = Gx(f) df = (s2/2)×d(0) = ¥, (9.4.7)

т.е. мощность белого шума и его дисперсия равны бесконечности, а значения шума не коррелированны для любых |t| ¹ 0, так как корреляционная функция представляет собой идеальный дельта-импульс. Тем не менее, многие помехи в радиотехнике, в технике связи и в других отраслях рассматривают как белый шум, если выполняется следующее соотношение между шириной спектров полезных сигналов и шумов

DFk.сигнал /DFk.шум << 1,

и спектральная плотность шумов слабо изменяется в интервале спектра сигнала.

Рис. 9.4.4. Функции корреляции белого шума в частотном интервале 0-F.

Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-F, то спектральная плотность шума задается в виде:

Gx(f) = s2, 0 £ f £ F; Gx(f) = 0, f > F, (9.4.8)

при этом корреляционная функция шума определяется выражением:

Rx(t) = s2F×sin(2pFt) / 2pFt. (9.4.9)

Эффективная шумовая ширина спектра:

DFk = Rx(0)/Gx(f)max = F. (9.4.10)

Эффективное шумовое время корреляции:

Tk = 2 |Rx(t)|dt /Rx(0). (9.4.11)

Реальное шумовое время корреляции целесообразно определить по ширине главного максимума функции Rx(t), в котором сосредоточена основная часть энергии шумов, при этом Tk = 1/F и DFkTk = 1, т.е. соотношение неопределенности выполняется.

Как следует из всех этих выражений и наглядно видно на рис. 9.4.4, при ограничении частотного диапазона в шумах появляется определенная корреляция между значениями и, чем меньше частотный диапазон шумов, тем больше их радиус корреляции. По существу, ограничение частотного диапазона шумов определенным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом, в полном соответствии с выражением (9.3.7), корреляционная функция импульсного отклика фильтра переносится на шум.

Гауссовский шум возникает при суммировании статистически независимых белых шумов и имеет следующую функцию корреляции:

Rx(t) = a exp(-2ps2t2). (9.4.12)

Спектральная плотность шумов:

Sx(f) = (a/s ) exp(-f2/2s2), - ¥ < f < ¥. (9.4.13)

Эффективные шумовые ширина спектра и время корреляции:

DWk = s /2 = 1.25s, Tk = 1/s = 0.4/s. (9.4.14)

Соотношение неопределенности превращается в равенство: DWkTk = 1/2.

Гауссовские случайные процессы преобладают в практических задачах. Случайный процесс x(t) называется гауссовским, если для любого набора фиксированных моментов времени tn случайные величины x(tn) подчиняются многомерному нормальному распределению. Плотность вероятностей мгновенных значений x(t) эргодического гауссовского процесса определяется выражением:

p(x) = (sx )-1 exp(-(x-mx)2/2s2). (9.4.15)

Среднее значение и его оценка по достаточно большому интервалу Т:

mx = x p(x) dx, mx » (1/T) x(t) dt.

При нулевом среднем (или при центрировании функции x(t) для упрощения расчетов) дисперсия процесса не зависит от t и равна:

sx2 = x2 p(x) dx.

Оценка дисперсии при больших Т:

sx2» (1/T) x2(t) dt = Sx(f) df = 2 Sx(f) df = Gx(f) df. (9.4.16)

Следовательно, процесс полностью характеризуется спектральной плотностью, по которой можно определить значение дисперсии процесса. На вид спектральных плотностей и соответствующих им ковариационных функций никаких ограничений не накладывается.

 

литература

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.- 448 с.

2. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

25. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: Питер, 2003. – 608 с.

26. Вероятностные методы в вычислительной технике: Учебное пособие для вузов./ А.В.Крайников и др. - М.: Высшая школа, 1986. - 312 с.

26. Вероятностные методы в вычислительной технике: Учебное пособие для вузов./ А.В.Крайников и др. - М.: Высшая школа, 1986. - 312 с.

27. Гурский Е.И. Теория вероятностей с элементами математической статистики: Учебное пособие для вузов. - М.: Высшая школа, 1971.- 328 с.

28. Игнатов В.А. Теория информации и передачи сигналов. - М.: Советское радио, 1979.

 







Дата добавления: 2015-08-27; просмотров: 691. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия