Студопедия — Технические характеристики скреперных лебедок
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Технические характеристики скреперных лебедок






Параметры 10ЛС-2СУ 17ЛС-2С 30ЛС-2СМ 55ЛС-2СМ 100ЛС-2СМ
30ЛС-2ПМ 55ЛС-2ПМ 100ЛС-2ПМ
30ЛС-3СМ 55ЛС-3СМ 100ЛС-3СМ
Тяговое усилие на рабочем канате, кН 9,8 15,7 27,5   78,4
Скорость каната м/с:          
рабочего 1,1 1,11 1,17 1,33 1,37
холостого 1,5 1,54 1,6 1,8 1,9
Диаметр каната, мм       19,5  
Канатоемкость барабана, м          
Масса, кг          
           
           

Скреперные лебедки мощностью до 30 кВт применяют при непродолжительной отработке маломощных залежей на подэтажах, а также при проведении подготовительных выработок, мощностью 55 и 100 кВт — в больших очистных камерах и на горизонтах выпуска руды.

Управление барабанами скреперной лебедки производят вручную (машинист при этом постоянно находится у лебедки), реже — с помощью устройств дистанционного или автоматического управления. В последних случаях улучшаются условия труда машиниста, который может находиться у места загрузки скрепера, повышаются производительность и безопасность обслуживания.

В скреперных лебедках с дистанционным управлением обеспечивается включение барабанов лебедки на расстоянии и автоматическое переключение на холостой ход после разгрузки: скрепера. Переключение тормозных рычагов барабанов производится пневмо- или гидроцилиндрами, управление которыми осуществляется клапанами, переключаемыми с помощью соленоидов. Соленоиды расположены в распределительной коробке, соединенной гибким кабелем с переносным блок-постом управления лебедкой.

Устройства автоматического управления скреперной лебедкой обеспечивают работу без вмешательства машиниста и отключение двигателя при обрыве каната. Переключение барабанов при нахождении скрепера в конечных точках осуществляется датчиками, которые получают импульсы от скрепера, канатов или от вращающихся деталей лебедки, центрального вала или барабанов. Например, в скреперных лебедках с автоматическим управлением от канатов, на которых в определенных точках жестко закреплены муфты, переключение барабанов осуществляется при воздействии муфт на конечные выключатели, управляющие соленоидами клапанов гидроцилиндров. Штоки гидроцилиндров, как и в лебедке с дистанционным управлением, связаны с тормозными рычагами.

Канаты, применяемые в скреперных установках, должны обладать высокой прочностью, гибкостью и износостойкостью. Обычно используют шестипрядные канаты двойной свивки с органическим сердечником крестовой свивки (проволоки в прядях и пряди каната свиты в противоположных направлениях), так как они меньше подвержены кручению по сравнению с канатами односторонней свивки, в которых направление навивки проволок в прядях и навивки прядей в канате совпадают. В зависимости от типа свивки прядей различают канаты с точечным касанием отдельных проволок между слоями прядей (типа ТК), линейным касанием (типа ЛК) или с комбинированным точечно-линейным касанием ТЛК. Пряди используемых в горной промышленности канатов сплетают из стальной светлой или оцинкованной проволоки с расчетной прочностью 1570—1960 МПа. Пряди по отдельным слоям сплетают из проволок одинакового (канат ЛК-О) или разного (канат ЛК-Р) диаметра. Канаты с линейным касанием отдельных проволок между слоями типа ЛК более гибкие, износостойкие и выдерживают большее число изгибов по сравнению с канатами типа ТК.

Условные обозначения канатов крестовой сливки, используемых в скреперных лебедках, 6×19+1 о. с. или 6×36+1 о. с. (первая цифра — число прядей в канате, вторая — число проволок в пряди плюс один органический сердечник). Диаметр каната (от 14 до 28 мм) выбирают в зависимости от мощности скреперной лебедки.

При доставке крепкой абразивной руды канаты быстро изнашиваются, поэтому расход их в среднем составляет от 25 до 60 кг на 1000 т доставляемой руды.

Блоки скреперной установки (рис. 7.6, а) должны быть прочными, легкими, обеспечивать простую запасовку и снятие каната, а также пропуск каната, связанного узлом, быть удобными для переноски и закрепления. Диаметр блока должен быть не менее 15—18 диаметров каната. В скреперных установках применяют блоки диаметром 200—400 мм.

Рис. 7.6. Блок скреперной установки и способы его крепления:

а — конструкция блока; б — клиновое крепление штыря блока; в — клиновое крепление сухаря; г — крепление блока на стоике; д — крепление блока на цепи; 1 — штырь; 2 — клин; 3 — стойка

В зависимости от места установки различают блоки концевые и поддерживающие. Концевые блоки, закрепляемые в конце скреперной установки и огибаемые под большим углом хвостовым канатом, испытывают большие нагрузки. Поддерживающие блоки устанавливают по трассе скреперования для подвешивания хвостового каната.

Крепление блоков производят с помощью штырей (рис. 7.6, б), канатных анкеров (рис. 7.6, в), удерживаемых забитыми в шпуры клиньями, иногда — с помощью петли каната на стойках (рис. 7.6, г) или отрезка цепи (рис. 7.6, д).

 

7.3. Расчет скреперных установок

Основными расчетными параметрами скреперной установки являются производительность, диаметр канатов, мощность лебедки.

Техническая производительность (т/ч) скреперной установки при погрузке руды в рудоспуск

где Vс — геометрическая вместимость скрепера, м3; γ — плотность погружаемой горной массы, т/м3; k3 — коэффициент заполнения скрепера, принимаемый для крупнокусковой руды 0,5—0,7, для среднекусковой 0,7—0,8 и мелкокусковой 0,9—1; kц — длительность цикла скреперования, с; L — длина скреперования, м; νгр и νпор — соответственно скорость движения груженого и порожнего скрепера (см. табл. 7.2); t = 10÷15 с — время пауз скрепера в конечных пунктах.

Эксплуатационная сменная производительность (т) скреперной установки

где tсм — длительность смены, ч; kи = 0,4÷0,7 — коэффициент использования скреперной установки в течение смены

где tзав, tв.д, tпр — соответственно время, затрачиваемое в течение смены на ликвидацию зависаний руды, на вторичное дробление негабарита на почве выработки и простоев установки в течение смены по различным причинам, мин.

Средняя продолжительность ликвидации одного зависания 15 мин, время на вторичное дробление зависит от количества негабаритов в выпускаемой руде, а время простоев по другим причинам составляет 60—80 мин.

Если производительность Qсм задана, то по формулам (7.1) и (7.2) можно найти необходимую вместимость скрепера (м3):

При безлюковой погрузке руды в вагоны электровозной откатки сменная производительность скреперной установки (т) зависит от времени загрузки одного вагона (с)

времени загрузки состава ztпог и времени t1, затрачиваемого на смену состава (с).

Эксплуатационная сменная производительность скреперной установки (т) при безлюковой погрузке

где Vв — вместимость кузова вагона, м3; z —число вагонов в составе.

Сопротивление перемещению (Н) груженого скрепера Wгр складывается из сопротивлений перемещению горной массы по почве выработки W1, самого скрепера W2, канатов W3 и сопротивления от хвостового каната лебедки W4.

где Gг = 1000Vcγk3 и G0 — масса соответственно доставляемой горной массы в скрепере и самого скрепера, кг; f1 = 0,8÷0,9 и f2 = 0,4÷0,55 — соответственно коэффициенты трения доставляемой горной массы и скрепера или канатов по почве выработки; β - угол наклона выработки, градус (при доставке вверх принимают знак «+», вниз — знак «—»); qk масса 1 м каната, кг /м; W4 = 2000÷3000 Н.

Сопротивление движению порожнего скрепера (Н)

Таблица 7.3







Дата добавления: 2015-08-27; просмотров: 1762. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия