Студопедия — Поперечный изгиб круглых пластин
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поперечный изгиб круглых пластин






 

При изучении деформирования прямоугольных пластин естественным было использование декартовой системы отсчета. Залогом относительной простоты математических выкладок явилось то, что граничный контур пластины совпадал с координатными линиями этой системы. Если граничный контур пластины совпадает с полярными координатными линиями, то принципиально возможное применение декартовой системы отсчета влечет за собой неоправданные математические усложнения. Избежать их удается путем перехода к полярным координатам. Особенно отчетливо преимущества полярной системы координат проявляются при рассмотрении круглых пластин.

6.1. Основные соотношения теории изгиба пластин в полярных координатах. Теорию тонких пластин в полярных координатах можно было бы строить по образу и подобию теории в декартовой системе отсчета с соответствующей редакцией всех рассуждений на использование полярных координат. В этом, однако, нет необходимости, ибо в математике существуют формальные правила, позволяющие переносить все нужные математические факты из одной системы отсчета в другую. Механическая суть задачи при этом не страдает. С подобной проблемой мы уже сталкивались при изучении плоской задачи теории упругости в декартовых и полярных координатах. Здесь, как и там, мы воспользуемся формальным аппаратом перехода от одной системы отсчета к другой.

В соответствии с этим формализмом, чтобы перенести результаты теории изгиба прямоугольных пластин в полярные координаты и , необходимо, прежде всего, воспользоваться их связью с декартовыми координатами

(6.1)

и вытекающими из нее дифференциальными соотношениями

(6.2)

Рассматривая теперь прогиб как сложную функцию , находим

(6.3)

Повторяя подобные выкладки, получим

(6.4)

Отсюда видно, что уравнение Софи Жермен в полярных координатах имеет вид

(6.5)

где под теперь понимается оператор Лапласа в полярных координатах:

(6.6)

В полярных координатах роль напряжений , , , , играют напряжения , , , , . Вместо декартовых обобщенных внутренних сил , , , , вводятся внутренние силы , , , , (см. рис. 6.1), связанные о полярными компонентами напряжений зависимостями

(6.7)

аналогичными (2.2)-(2.4).

Выразим величины (6.7) через функцию прогиба, ограничиваясь случаем действия на пластину лишь поперечных нагрузок. Для этого, вообще говоря, естественно воспользоваться связью полярных компонент напряжений с декартовыми, выражениями последних через функцию прогиба и правилами перехода от производных по и к производным по и (см. (6.4)). Можно указать и более простой путь. Действительно, если предположить, что оси и совмещены, то, как видно из рис. 6.2, где показаны фрагменты срединной плоскости пластины в окрестности интересующих нас сечений,

Подставляя сюда выражения (2.2)-(2.4), с учетом (6.4) найдем

(6.8)

Аналогичным образом можно выразить через и полярные компоненты напряжений. Сравнивая их затем с последними зависимостями, придем к формулам

(6.9)

Граничные условия на краю записываются так:

(6.10)

если этот край защемлен (рис. 6.З а),

(6.11)

если он шарнирно оперт (рис. 6.3 6), и

(6.12)

если этот край свободен (рис. 6.З в); , — заданные условием задачи величины.

В случае края условия (6.10)-(6.12) принимают соответственно вид

(6.13)

где — заданные величины.

Приведенные выше зависимости позволяют ставить и решать различные задачи изгиба круглых пластин и пластин в форме кольцевого сектора. Далее мы ограничимся изучением одного важного частного случая - осе симметричного изгиба круглых пластин.

 
 

6.2. Осесимметричный изгиб круглых пластин. Осесимметричный изгиб реализуется в круглых пластинах, когда граничные условия и действующая на пластину внешняя нагрузка не зависят от полярного угла. В таком случае естественно считать, что все величины, описывающие напряженно-деформированное состояние пластины, также не зависят от полярного угла . Все это приводит к существенному упрощению выражений предыдущего пункта.

Так уравнение Софи Жермен (6.5) принимает вид

(6.14)

или

(6.15)

и имеет общее решение

(6.16)

где последним слагаемым представлено частное решение

, (6.17)

которое, в случае постоянной нагрузки , определяется по формуле

(6.18)

Зависимости (6.16), (6.17) получаются путем последовательного выполнения операций интегрирования в уравнении (6.15). Постоянные интегрирования следует находить из краевых условий вида (6.10)-(6.12) после упрощения их для осесимметричного случая. На каждом крае пластины и () имеется ровно два условия. Конкретное начертание их мы дадим чуть позже. А сейчас заметим, что формулы (6.8) в рассматриваемом варианте изгиба принимают вид

(6.19)

Упрощенные условия вида (6.10)-(6.12) можно теперь записать так

(6.20)

на кромке и

(6.21)

на кромке . Здесь , , , — заданные постоянные величины.

Если область, занимаемая срединной плоскостью пластины, — круг (), то вместо условий вида (6.21) необходимо потребовать ограниченность прогиба в точке :

(6.22)

Отсюда приходим к выводу, что здесь следует принять и общее решение задачи писать в виде

(6.23)

Выясним смысл постоянной . Предположим, что к пластине приложена только сосредоточенная поперечная сила в центре . Выделим из пластины круг радиуса и рассмотрим его равновесие в отношении проекций на ось всех действующих на него сил (рис. 6.4). Имеем

так что

(6.24)

С другой стороны, в рассматриваемом случае w* = 0 и следовательно

(6.25)

Сравнивая формулы (6.24), (6.25), находим

Таким образом, эта константа отлична от нуля лишь тогда, когда в центре пластины приложена сосредоточенная поперечная сила. В этом общем случае

(6.26)

Оставшиеся две постоянные найдутся из граничных условий на кромке .

 

 







Дата добавления: 2015-08-27; просмотров: 997. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия