Студопедия — Погрешности измерений и их классификация
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Погрешности измерений и их классификация






Истинным значением физической величины называют такое ее значение, которое идеальным образом отражало бы в качественном или количественном отношении существующее свойство объекта. При измерении любой физической величины ее истинное значение определить невозможно. Повторные измерения одной и той же физической величины дают результаты, отличающиеся друг от друга даже тогда, когда они проводились одним и тем же лицом, одним и тем же способом, посредством одних и тех же приборов. Причина этого заключается как в ограниченной точности приборов, так и во влиянии на измерение многих факторов, учесть которые невозможно. Поэтому любые измерения всегда производятся с погрешностями (наряду с термином «погрешность» используется также слово «ошибка» в значении именно погрешность, а не какое-то ошибочное действие). Погрешностью измерения называют отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерения, выраженная в единицах измеряемой величины, называется абсолютной погрешностью измерения. Абсолютная погрешность измерения в принципе определяется формулой:

Δ х = | x – X |, (2.1)

где x – результат измерения (оценка измеряемой величины в виде некоторого числа принятых для нее единиц, полученная путем измерения), X – истинное значение физической величины. Однако, поскольку истинное значение остается неизвестным, на практике можно найти лишь приближенную оценку погрешностей измерения.

Качество измерения определяет относительная погрешность – отношение абсолютной погрешности измерения к модулю истинного значения измеряемой величины:

(2.2)

Относительная погрешность может быть выражена в процентах, при этом она определяется по формуле

(2.3)

Качество измерений, отражающее близость результатов к истинному значению измеряемой величины, определяется также точностью измерений. Высокая точность измерения соответствует малым погрешностям. Количественно точность может быть выражена обратной величиной относительной погрешности, определенной по формуле (2.2).

В зависимости от источников погрешностей различают следующие составляющие погрешностей измерений:

а. Методическая погрешность ΔМ, которая возникает вследствие несовершенства метода измерений, обусловливающего отличие выбранной идеализированной модели измерения от реальной процедуры.

б. Погрешность прибора ΔП, которая обусловлена тем, что показание любого, даже самого точного прибора всегда отличаются от истинного значения измеряемой величины. Погрешность прибора может содержать случайную и систематическую составляющие (см. далее).

в. Погрешность округления ΔО, возникающая при считывании со шкалы прибора результата измерения, который всегда содержит конечное число значащих цифр, т.е. всегда имеет погрешность округления.

г. Погрешность вычисления ΔВ, которая появляется в процессе математической обработки результатов измерений, когда вычисления ведутся с конечным числом значащих цифр и при этом возникают погрешности, связанные с такими вычислениями. Значащими цифрами числа называют все его цифры, начиная с первой, отличной от нуля слева. Например: число 0,00707 содержит три значащие цифры; число 2,500 – четыре значащие цифры.

д. Промахи – погрешности, существенно превышающие ожидаемые значения погрешностей при данных условиях эксперимента. Промахи могут быть вызваны невнимательностью экспериментатора, неправильно сделавшего отсчет или неверно записавшего его, неисправностью средств измерения, резким сотрясением установки, наводками при коротком замыкании цепи соседней установки и т.п. Промахи должны быть исключены из результатов измерений. Такое исключение осуществляется по специальной методике, которая будет изложена ниже (см. раздел 3.5).

По характеру проявления различают случайные и систематические погрешности. Систематической называют составляющую погрешности измерения, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Например: погрешность от несоответствия действительного значения меры, с помощью которой выполняют измерение, ее номинальному значению; погрешность, возникающая при измерении объема жидкости без учета теплового расширения в случае изменения температуры; погрешность при изменении массы, если не учитывать действия выталкивающей силы воздуха на взвешиваемое тело и на разновесах; шкала линейки может быть нанесена неравномерно, положение нуля термометра может не соответствовать нулевой температуре, капилляр термометра в разных местах может иметь разное сечение – эти причины также приводят к систематическим погрешностям. Систематическую погрешность вносит также округление численных значение физических констант.

Поскольку причины, вызывающие систематические погрешности в большинстве случаев известны, то эти погрешности, в принципе, могут быть исключены за счет изменения метода измерения, введения поправок к показаниям приборов, учета систематического влияния внешних факторов и т.д. Однако на практике этого не всегда легко добиться, поскольку повторные измерения не выявляют систематических погрешностей.

Случайной называют составляющую погрешности измерения, изменяющуюся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются сложной совокупностью причин, трудно поддающихся анализу. Присутствие случайных погрешностей (в отличие от систематических) легко обнаруживаются при повторных измерениях в виде некоторого разброса получаемых результатов. В качестве примера случайных погрешностей можно привести погрешность вследствие вариации показаний измерительного прибора; погрешность округления при отсчитывании показаний измерительного прибора; погрешность вследствие параллакса, которая может возникать при снятии показаний стрелочных приборов. Случайные погрешности вызываются также сотрясениями фундамента здания, влиянием незначительного движения воздуха, колебаниями напряжения в сети, питающей приборы и т.д.

Главной отличительной чертой случайных погрешностей является их непредсказуемость от одного отсчета к другому. Поэтому оценка случайных погрешностей может быть осуществлена только на основе теории вероятностей и математической статистики. Далее будет показано, что случайная погрешность уменьшается при увеличении числа измерений физической величины. Однако случайные ошибки надо сравнивать с систематическими, так как иначе может оказаться, что повышение точности измерений будет иллюзорным.

В качестве наглядной иллюстрации вышесказанного на Рис.1а на числовой оси приведены результаты пяти измерений, отмеченных черточками, а также истинное значение X измеряемой величины, когда имеются только случайные ошибки или случайные ошибки значительно превышают систематические; на Рис.1б представлены результаты пяти измерений, когда при наличии случайных ошибок систематические вносят значительный вклад.

а) б)

Рис. 1







Дата добавления: 2015-08-27; просмотров: 1063. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия