Студопедия — Белки и их биологическая роль. Представляет собой две a- спирали (своеобразные нити)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Белки и их биологическая роль. Представляет собой две a- спирали (своеобразные нити)

Представляет собой две a- спирали (своеобразные нити). Он соединяется с тропонином и этот комплекс присоединяется к актину.

Тропонины

Глобулярный белок нескольких видов. Выделяют: TN-C, TN-I, TN-T.

TN-T связывается с тропомиозином, TN-I – ингибитор АТФ-азы, TN-C связывается с Ca++.

Имеют специфические отличия по АК составу от белков сердечной мышцы. Их можно определить с помощью иммуноферментного анализа.

 

Небелковые азотистые комплексы. Экстрактивные вещества

Экстрактивные вещества – небелковые азотистые вещества. К ним относятся:

АТФ: 0,25-0,40%.

Креатин-фосфат - 0,4-1,0% и его уровень растет при физической нагрузке. Он синтезируется из АРГ, МЕТ, ГЛИ, и может переходить в креатин. [рис. формулы креатин-фосфата COOH-CH2-N(CH3)-C(NH)-NH~PO3H2]

Карназин: b-аланилгистидин, участвует в транспорте фосфатных остатков. [рис. формулы карназина]

Ансерин отличается от карназина тем, что имеет метильную группировку; его функция - транспорт ионов Са++.

Карнитин: производная g-амино-b-гидроксимасляной кислоты. Корнитин транспортирует жирные кислоты через мембрану в митохондрии, поэтому мышечная ткань может использовать жирные кислоты в качестве источника энергии.

В мышечной ткани есть свободные АК, пуриновые основания, мочевина.

Углеводы мышечной ткани

Гликоген: 0,2-2%, но мышечная масса настолько велика, что содержание гликогена в мышцах в целом в 2 раза больше, чем в печени. Также содержаться гексозомонофосфаты, триозомонофосфаты, ПВК, молочная кислота, следы глюкозы (свободной почти нет).

Липиды – около 1%. Представлены нейтральными жирами в соединительно-тканных волокнах. Холестерол и фосфолипиды – компоненты биомембран. Жирные кислоты играют особую роль в миокарде как источник энергии.

 

Минеральные вещества. K+, Na+ участвуют в передаче возбуждения; также содержаться Ca++, Mg++, Fe++ (особенно много в миоглобине).

 

Химический состав мышечной ткани может изменяться при патологиях: мышечные дистрофии, полимиозиты, атрофия мышц. Всё это приводит к снижению фибриллярных белков и увеличению содержания белков стромы, саркоплазмы, снижению уровня АТФ, креатин-фосфата. Креатинурия развивается при многих мышечных патологиях, нарушается удержание его в мышечной ткани. В норме креатин образуется в печени из ГЛИ, МЕТ, АРГ, потом попадает в кровь, достигает мышцы, где превращается в креатин–фосфат при участии АТФ; часть креатина может превращаться в креатинин, который выводится с мочой. При патологии креатин из крови сразу поступает в мочу – креатинурия.

Энергетическое обеспечение мышечного сокращения

Есть некоторые особенности:

1. энергия необходима периодически;

2. при сокращении мышцы нарушается ее кровоснабжение.

Механизмы преодоления:

1. мышечная ткань содержит миоглобин, который связывает кислород;

2. мышечная ткань отличается большим содержанием фосфорорганических соединений, что позволяет без окислительного распада углеводов сокращаться мышце.

Запасы АТФ небольшие, они используются за 0,5 сек сокращения, но при этом уровень АТФ не снижается, т.к. есть механизмы ресинтеза АТФ.

Ресинтез АТФ – образование АТФ из АДФ и неорганического фосфата.

Пути ресинтеза АТФ:

1. креатинкиназная реакция:

[креатинфосфат+АДФ«(креатинфосфокиназа) креатин+АТФ] Это основная реакция, причем реакция будет идти вправо при сокращении, а влево - в состоянии покоя. Т.о., креатинфосфат играет роль транспорта энергии из митохонрий.

2. аденилаткиназная реакция:

АДФ+АДФ ®(аденилаткиназа) АТФ+АМФ. При этом АМФ подвергается распаду и выводится как мочевая кислота.

3. анаэробное окисление, при этом образуется молочная кислота. Эта реакция характерна для быстрых белых мышц.

4. аэробное окисление. Оно наиболее эффективно. Происходит окисление углеводов до воды и углекислого газа. Этот процесс характерен для красных мышц, окислению могут подвергаться не только углеводы, но и жирные кислоты.

Нарушения метаболизма при ишемической болезни сердца

Ишемия – недостаток кровоснабжения, при этом снижается уровень кислорода, снижается окислительное фосфсрилирование, увеличиваются анаэробные процессы. Это всё приводит к снижению уровня гликогена и повышению уровня лактата, что приводит к развитию ацидоза. Это в свою очередь приводит к ингибированию активности фосфофруктокиназы (блокируется гликолиз), снижается уровень АТФ, снижается уровень креатинфосфата. Нарушается проницаемость мембран, калий выходит из клетки, происходит выход ферментов в кровь (ферментемия). Содержание фибриллярных белков падает, увеличивается количество белков стромы. Нарушается окисление жиров в миокарде и вызывается жировая инфильтрация миокарда.

Биохимия мышечного сокращения

Раньше мышечное сокращение представляли как изменение структуры белка. Но эти представления были опровергнуты с помощью электронной микроскопии. Теория Хэнсона и Хаксли: укорочение за счет проникновения нитей актина между нитями миозина.

При этом необходимо наличие Са2+. В покое кальций находится в трубочках саркоплазматического ретикулума. Са-зависимая АТФ-аза как бы закачивает Са2+ в трубочки за счет распада АТФ. Т.е. если много АТФ, то свободного Са++ мало.

Если возникает раздражение нервного волокна, то Са2+ выходит из саркоплазматического ретикулума за счет изменения проницаемости мембраны, и выход его приводит к взаимодействию головки миозина с актином. Если есть Са2+ и АТФ, то белки продвигаются друг между другом. В покое миозин связан с Mg и АТФ. Если нет расщепления АТФ, то спайки не образуются. Выход Са2+ вызывает распад АТФ и образование спаек.

1. SR-Ca2+ ®(нервное возбуждение) SR+ Ca2+

2. активация актина: А-Тр+ Ca2+ ®А+ Тр- Ca2+

3. активация АТФ-азы кальция: Миозин-АТФ +Н2О+Са2+®(АТФ-аза) Миозин~Фосфат + АДФ

4. взаимодействие миозина и актина: М~Ф + А ®(+Са2+, +Н2О)М~А + Фн

5. М~А ®(сокращение)М-А+ работа

 

Для расслабления тоже нужна энергия АТФ:

1. М-А + АТФ®М-АТФ + А

2. связывание Са2+: Т-Са2++SR+АТФ®Т+SR- Са2++ АДФ+Фн

3. связывание тропонина с актином: Т+А®Т-А

 

Биохимия соединительной ткани

Соединительная ткань составляет 50% массы тела человека. Широко представлена в организме; это лимфоидная, жировая, костная ткани. Есть 3 принципа, по которым определяют соединительную ткань:

1. большое количество межклеточного вещества;

2. в межклеточном веществе присутствуют фибриллярные волокна (коллагеновые, эластиновые, ретикулярные);

3. главная функция заключается в синтезе комплексных веществ на экспорт (экстрацеллюлярные компоненты).

Функции соединительной ткани:

1. опорная (костная, хрящевая такни, сухожилия);

2. барьерная – связана с положением соединительной ткани. Защищает от проникновения инфекционных заболеваний Имеются процессы фагоцитоза и иммуногенеза;

3. метаболическая – синтезирует на экспорт белки, макромолекулярные вещества (коллагеновые волокна), протеогликаны. Кортизол в фибробластах превращается в 11-b-оксиандростедион, который противоположен ему (кортизолу) по действию. Так, кортизол угнетает пролиферацию и синтетическую активность соединительной ткани, а 11-b-оксиандростедион увеличивает анаболизм;

4. депонирующая – выполняет жировая ткань, в которой депонируются жиры;

5. репаративная функция – образование рубцовой ткани.

 

Клеточные элементы соединительной ткани:

1. фибробласты – продуцируют коллаген, эластин, гликозаминогликаны, протеогликаны;

2. тучные клетки (гепариноциты) – продуцируют гепарин, гистамин, 5-окситриптамин;

3. макрофаги;

4. плазматические клетки;

5. клетки, проникающие в соединительную ткань из крови (лимфоциты и др.).

 

Межклеточный матрикс соединительной ткани характеризуется наличием волокнистых структур.

Коллаген – наиболее распространенный белок (25-30% от всех белков человека). Более 80% всех белков он составляет в коже, костях, связках, сухожилиях, хрящах. Поэтому он долгое время считался белком соединительной ткани.

Коллаген характеризуется особым АК составом:

- 1/3 всех АК остатков приходится на глицин;

- значительное количество пролина (до 10%);

- встречается гидроксипролин и гидроксилизин.

[рис. 4-гидроксипролина и 5-гидроксилизина]

Большая часть представлена триадами –ГЛИ-Х-Y-, где Х – чаще пролин, а Y – чаще гидроксипролин. Эта регулярная последовательность представлена левозакрученной коллагеновой спиралью, более вытянутой, чем a-спираль. Каждая из спиралей представляет собой полипептидную цепь. Несколько спиралей соединяются в одну суперспираль, удерживающуюся за счет водородных связей между субъединицами. Длинна суперспирали примерно 300 нМ.

По АК составу выделяют 2 вида коллагеновых цепей:

- a1;

- a2.

a1 могут быть 4-х типов: a1(I), a1(II), a1(III), a1(IV).

Наиболее распространен 1 тип, куда входит и [a1(I)]2a2.

 

Процесс синтеза коллагена можно разделить на несколько этапов:

1. трансляция;

2. котрансляционная модификация цепи;

3. трансмембранный перенос;

4. внеклеточная модификация и образование коллагеновых волокон.

[рис. проколлагена: слева (N-конец) сигнальный пептид, затем 1050 АК остатков будущего коллагена, справа (С-конец) С-концевой пептид. Рисуется просто линия и на ней отмечается где и что].

Препроколлаген претерпевает процессинг в ходе прохождения через ЭПС и комплекс Гольджи до появления во внеклеточном пространстве. При этом происходят следующие процессы:

- гидроксилирование [рис. пролилпептид (в составе белка)+ a-КГ+ О2®(пролилгидроксилаза, витамин С) гидроксилпролилпептид + СООН-СН2-СН2-СООН (это сукцинат) +Н+. Пролилпептид рисуется как структура пролина с незакрытыми связями.]

- гликозимирование – внедрение углевода, возможно только после гидроксилирования [рис. гидроксилизин (с незакрытыми связями) +УДФ-галактоза® (галактозилтрансфераза) галактозилпропептид+ УДФ]. Гликозимирование препятствует действию протеаз и способствует возникновению межцепочечных водородных связей.

- формирование тройной спирали коллагена. После этого невозможно ни гидроксилирование, ни гликозимирование.

 

 

Если вам понравились шпаргалки, то просто напишите мне личное сообщение-спасибо вконтакте (http://vkontakte.ru/sergepotapov) или прям на моей страничке (http://www.potapov.org): вам пофиг, а мне будет приятно;)

 

 


       
 
 
   

Белки и их биологическая роль

Белок (протеины) – protos – предшествующий всему, первичный, наиглавнейший, определяющий всё остальное.

Белки – это высокомолекулярные азотсодержащие органические вещества, состоящие из аминокислот, соединённых в цепи с помощью пептидных связей и имеющих сложную структурную организацию.

Основные отличительные признаки белков:

1. содержат азота больше, чем другие вещества (16%). Так, 1г азота содержится в 6,25г белка;

2. состоят из альфа-аминокислот L-ряда;

3. наличие пептидных связей;

4. большая молекулярная масса (от 4-5 тыс. дальтон до нескольких млн.);

5. имеют сложную структурную организацию;

6. белки составляют 25% сырой ткани и 45-50% сухой ткани.

Биологическая роль белков:

1. каталитическая (выполняют ферменты);

2. структурная, т.е. белки являются основным компонентом клеточных структур;

3. регуляторная (выполняют белки-гормоны);

4. рецепторная, т.е. рецепторы клеточных мембран имеют белковую природу;

5. транспортная – белки участвуют в транспорте липидов, токсических веществ, кислорода и т.д.;

6. опорная – выполняет белок коллаген;

7. энергетическая. Заключается в том, что при окислении 1г белка выделяется 17,6 кДж (4,1ккал) энергии;

8. сократительная – её выполняют белки актин и миозин;

9. генно-регуляторная – её выполняют белки гистоны, участвуя в регуляции репликации;

10. имуннологическая – её выполняют белки антитела;

11. гемостатическая – участвуют в свёртывании крови, препятствуют кровотечению;

12. антитоксическая, т.е. белки связывают многие токсические вещества (особенно соли тяжёлых металлов) и препятствуют развитию интоксикации в организме.

Физико-химические свойства белков:

Структура белка определяет его свойства. Существует несколько групп свойств.

I. Электрохимические свойства белков:

1. белки - амфотерные полиэлектролиты (амфолиты). Это достигается за счет наличия концевых СОО- и NH3+ групп, а также ионогенных групп боковых радикалов (ГЛУ, АСП, ЛИЗ, АРГ, ГИС)

2. буферность белков (поддержка рН среды). При физиологических значениях рН буферные свойства ограничены и обусловлены наличием кислотных и основных групп. Наибольшим буферным действием обладает гистидин, которого много в гемоглобине, за счет чего последний является мощным буфером крови;

3. наличие заряда в белковой молекуле. Обусловлено соотношением кислых и основных АК, а также ионизацией бокового радикала. Степень ионизации зависит от рН среды. Так, если среда кислая, то ионизация СООН групп заторможена и белок приобретает «+» заряд. В щелочной среде заторможена ионизация NH 2 групп и белок заряжается «--».

Изоэлектрическое состояние белка наступает, когда заряд белковой молекулы равен 0, а рН среды, при котором белок находится в изоэлектрическом состоянии, называется изоэлектрической точкой (рI). Она определяется соотношением кислых и основных радикалов. У большей части белков цитоплазмы рI меньше 7, т.е. эти белки кислые; у ядерных белков больше 7, т.е. они основные.

Наличие заряда используется для разделения белков с помощью электрофореза – движения белков в электрическом поле. Наличие заряда обусловливает устойчивость в растворе. В изоэлектрическом состоянии белки наименее устойчивы и выпадают в осадок.

 

II. Коллоидные свойства.

Растворы белков чаще всего достаточно устойчивы. Хорошая растворимость приближает растворы белков к истинным растворам, но высокая молекулярная масса придает им свойства коллоидных систем:

1. способность рассеивать свет (опалисценция). Наблюдается помутнение при боковом освещении - эффект Тиндаля [рис. рассеивающегося луча]. Используется в световой микроскопии (нефелометрии);

2. малая скорость диффузии;

3. высокая вязкость растворов белков;

4. неспособность белков проникать через полупроницаемые мембраны (явление осмоса). На этом основан диализ – очищение белков;

5. способность белковых растворов образовывать гель. Наиболее выражено у фибриллярных белков.

 

III. Гидрофильные свойства.

Белки хорошо связываются водой, обусловлено наличием полярных гидрофильных групп. Вода может проникать в белок и связываться с его гидрофильными группами, вызывая его набухание. Также возможно образование гидратной оболочки. 100г белка связывают 30-35г воды.

 

IV. Растворимость белков.

Чем больше полярных групп содержит белок, тем больше он растворим. Глобулярные белки растворяются лучше. Растворимость белков зависит от 2-х факторов:

- наличия заряда;

- образования гидратной оболочки.

Чтобы осадить белок, необходимо ликвидировать эти 2 фактора. Осаждение белков с помощью нейтральных солей называется высаливание – обратимое осаждение. После удаления высаливающегося фактора белок сохраняет все свои свойства.

 

V. Денатурация.

Под действием внешних факторов нарушается высшие уровни (вторичный, третичный, четвертичный) структурной организации белков с сохранением первичной структуры. При этом белок теряет свои нативные свойства. При денатурации разрываются связи, удерживающие высшие структурные организации. Денатурацию вызывают физические и химические факторы: давление, температура, механическое воздействие, ультразвук, ионизирующее излучение, кислоты, щёлочи, органические растворители, соли тяжёлых металлов. При кратковременном воздействии денатурирующих факторов возможна ренатурация.

 

 

Классификация белков

В настоящее время насчитывается ~5 млн. белков. Их пытались классифицировать по физико-химическим свойствам, например по растворимости, плотности, форме молекул (глобулярные и фибриллярные), локализации и происхождению, АК-составу, биологической роли. Однако все эти классификации не соответствуют тем знаниям о белках, которые известны на сегодняшний день.

В основе классификации лежит химический состав белка. По этому признаку все белки делят на простые и сложные.

Простые белки – это белки, образованные только полипептидными цепями, состоящие только из АК-ных остатков.

Сложные белки имеют две части: белковая или пептидная построена из АК-ных остатков, и небелковая (простетическая) часть.

К простым белкам относят: гистоны, протамины, альбумины, глобулины, глютелины, проламины и протеноиды (склеропротеины).

К сложным белкам относят: хромопротеины, нуклеопротеины, фосфопротеины, углевод-белковые и липид-белковые комплексы.

Связь белковой части с небелковой может быть ковалентной, ионной и др.

 




<== предыдущая лекция | следующая лекция ==>
Тропомиозин | 

Дата добавления: 2015-08-29; просмотров: 372. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия