Студопедия — Найти площадь области, ограниченной эллипсом .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Найти площадь области, ограниченной эллипсом .






 

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t, dx = a cos t dt. Новые пределы интегрирования t = α; и t = β; определяются из уравнений 0 = a sin t, a = a sin t. Можно положить α; = 0 и β; = π;/2.

Находим одну четвертую искомой площади

Отсюда S = πab.

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

 

Решение.

Найдем точки пересечения линий y = - x 2 + x + 4, y = - x + 1, приравнивая ординаты линий: - x 2 + x + 4 = - x + 1 или x 2 - 2 x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

 

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2cos 2 φ;.

 

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ;) и двумя полярными радиусами φ;1 = ʅ; и φ;2 = ʆ;, выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2.

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3.

 

Решение.

Запишем уравнение астроиды в виде

(x 1/3)2 + (y 1/3)2 = (a 1/3)2.

Положим x 1/3 = a 1/3cos t, y 1/3 = a 1/3sin t.

Отсюда получаем параметрические уравнения астроиды

x = a cos3 t, y = a sin3 t, (*)

где 0 ≤ t ≤ 2 π;.

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L, соответствующую изменению параметра t от 0 до π;/2.

Получаем

dx = -3 a cos2 t sin t dt, dy = 3 a sin2 t cos t dt.

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π;/2, получаем

Отсюда L = 6 a.

Найти площадь, ограниченную спиралью Архимеда r = ; и двумя радиусами-векторами, которые соответствуют полярным углам φ;1и φ;2 (φ;1 < φ;2).

 

Решение.

Площадь, ограниченная кривой r = f (φ;) вычисляется по формуле , где α; и β; - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ;1 = 0; φ;2 = 2 π;):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ;1 = 2 π;; φ;2 = 4 π;):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2.

 

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA:

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) [0, π;]; б) [0, 2 π;].

 

Решение.

а) На отрезке [0, π;] функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x, находим

б) На отрезке [0, 2 π;], функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок [0, 2 π;] разделить на два [0, π;] и [ π;, 2 π;], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [ π;, 2 π;] площадь берется со знаком минус.

В итоге, искомая площадь равна







Дата добавления: 2015-08-17; просмотров: 1652. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия