Студопедия — СТАЦИОНАРНОЕ СОСТОЯНИЕ БИОСИСТЕМ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СТАЦИОНАРНОЕ СОСТОЯНИЕ БИОСИСТЕМ






Особенностью биосистем является то, что они не просто открытые системы, но системы, находящиеся в стационарном состоянии. При стационарном состоянии приток и отток энтропии происходят с постоянной скоростью, поэтому общая энтропия системы не меняется во времени (dS / dt = 0). Классической моделью стационарного состояния является система баков (модель Бэртона) (рис. 2). При определенной степени открытости кранов в баках В и С устанавливаются постоянные уровни воды. Однако это постоянство коренным образом отличается от постоянства уровня в сосуде с водой. Оно обеспечивается непрерывным притоком и оттоком воды с определенной скоростью.

Зачем нужно стационарное состояние биосистемам? Ответ очевиден. Благодаря ему за счет непрерывного обмена энергией с внешней средой биосистемы не только находятся на удалении от термодинамического равновесия (низший возможный энергетический уровень, на котором энтропия системы максимальна) и сохраняют свою работоспособность, но и поддерживают во времени постоянство своих параметров. Немаловажно и то, что в стационарном состоянии биосистемы обладают способностью к авторегуляции.

По крайней мере два основных свойства характерны для стационарного состояния биосистем. Прежде всего это его энергетический уровень, который показывает, насколько далеко система удалена от термодинамического равновесия. Живой организм, как отмечал Оствальд, - это очаг установившихся стационарных состояний. Их уровни не случайны. Они возникли в процессе эволюции и обеспечивают организму наиболее выгодный энергетический обмен в данных конкретных условиях.

Особенностью биосистем является то, что многие протекающие в них процессы находятся на значительном удалении от термодинамического равновесия. В этих условиях для системы характерен очень интенсивный обмен энтропией с внешней средой, что обеспечивает возможность протекания в ней процессов самоорганизации и возникновение специфических динамических структур. Системы, далекие от равновесия, в которых происходит интенсивное рассеяние, диссипация энергии, обозначаются как диссипативные, а область физики, изучающая эти системы и их упорядочение, называется синергетикой [2].

Другой интересной особенностью стационарного состояния является определенная степень его устойчивости. Если стационарное состояние достаточно устойчиво, то после не очень сильного отклонения от него, вызванного каким-либо возмущающим воздействием, система может вновь вернуться в исходное положение. Типичный пример такой устойчивости - содержание глюкозы в крови человека. Как известно, оно достаточно постоянно, но это постоянство поддерживается за счет непрерывного притока и оттока глюкозы. Если ввести в кровь какое-то количество этого углевода, то его содержание увеличится. Однако через некоторое время содержание глюкозы в крови вернется к исходному уровню.

Причина устойчивости стационарных состояний была вскрыта Пригожиным. Он доказал, что в стационарном состоянии биосистемы обладают очень интересным свойством. Если система не очень удалена от состояния термодинамического равновесия, член diS / dt в уравнении (1) при стационарном состоянии сохраняет свое положительное значение, но стремится к минимуму, то есть

Такое нахождение системы в экстремуме, соответствующем минимуму производства энтропии, обеспечивает ей наиболее устойчивое состояние. Важность этого положения ярко обрисовал известный биоэнергетик А. Качальский: "Этот замечательный вывод проливает свет на мудрость живых организмов. Жизнь - это постоянная борьба против тенденции к возрастанию энтропии. Синтез больших, богатых энергией макромолекул, образование клеток с их сложной структурой, развитие организации - все это мощные антиэнтропийные факторы. Но поскольку, согласно второму закону термодинамики, справедливому для всех явлений природы, избежать возрастания энтропии нельзя, живые организмы избрали наименьшее зло - они существуют в стационарных состояниях, для которых характерна минимальная скорость возрастания энтропии".







Дата добавления: 2015-08-29; просмотров: 1536. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия