Студопедия — Термодинамика живых систем
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамика живых систем

Термодинамика живых систем

Состояние живых систем в любой момент времени (динамическое состояние) характерно тем, что элементы системы постоянно разрушаются и строятся заново. Этот процесс носит название биологического обновления. Для обновления элементов в живых системах требуется постоянный приток извне веществ и энергии, а также вывод во внешнюю среду тепла и продуктов распада. Это означает, что живые системы обязательно должны быть открытыми системами. Благодаря этому в них создается и поддерживается химическое и физическое неравновесие. Именно на этом неравновесии основана работоспособность живой системы, направленная на поддержание высокой упорядоченности своей структуры, а, значит, на сохранение жизни и осуществление различных жизненных функций. Кроме того, живая система, благодаря свойству открытости, достигает стационарности, т.е. постоянства своего неравновесного состояния.

В изолированной системе (такая система не обменивается с внешней средой веществом и энергией), находящейся в неравновесном состоянии, происходят необратимые процессы, которые стремятся привести систему в равновесное состояние. Переход живой системы в такое состояние означает для нее смерть.

Таким образом, открытость – одно из важнейших свойств живых систем.

Весьма важным является вопрос о применимости законов термодинамики к живым системам.

I закон (начало) термодинамики. Первый закон термодинамики гласит: изменение энергии системы (dE) равно количеству тепла (Q), полученному системой, плюс работа внешних сил (A), совершенная над системой

dE = Q + A

Для адиабатически изолированных систем (Q = 0, то есть обмена теплом с внешней средой не происходит) и замкнутых (А = 0, то есть внешние силы отсутствуют) dE = 0. Последнее утверждение является законом сохранения энергии: при всех изменениях, происходящих в адиабатически изолированных и замкнутых системах, полная энергия системы остается постоянной.

Если рассматривать термодинамическую систему, состоящую только из живой системы, то закон сохранения энергии неприменим, так как живая система является открытой. Для термодинамической системы, включающей в себя живую систему и среду, с которой система обменивается энергией и веществом, закон сохранения энергии выполняется. Действительно, как показали опыты, общее количество энергии, которое получает организм за некоторый промежуток времени, вновь обнаруживается впоследствии в виде:

а) выделяемого тепла;

б) совершаемой внешней работы или выделяемых веществ;

в) теплоты сгорания веществ, синтезированных за этот промежуток времени за счет энергии, поступившей извне.

II закон (начало) термодинамики. Второй закон термодинамики утверждает, что в изолированной термодинамической системе энтропия никогда не может уменьшаться. Она равна нулю при обратимых процессах и может только увеличиваться при необратимых процессах.

Здесь есть также определенная связь с упорядоченностью системы, а также с информацией (большая упорядоченность соответствует большему количеству информации). Можно говорить при этом о единстве природы информации и энтропии. Действительно, увеличение энтропии соответствует переходу системы из более упорядоченного в менее упорядоченное состояние. Такой переход сопровождается уменьшением информации, содержащейся в структуре системы. Беспорядок, неопределенность можно трактовать как недостаток информации. В свою очередь возрастание количества информации уменьшает неопределенность.

Вспомним физический смысл энтропии. Все процессы, самопроизвольно протекающие в природе, необратимы и способствуют переходу системы в равновесное состояние, которое всегда характеризуется тем, что:

а) в процессе этого перехода всегда безвозвратно выделяется некоторая энергия, и для совершения полезной работы она использована быть не может;

б) в равновесном состоянии элементы системы характеризуются наименьшей упорядочен-ностью.

Отсюда следует, что энтропия является как мерой рассеяния энергии, так и мерой неупорядоченности системы.

Применение второго закона термодинамики к живым системам без учета того, что это открытые системы, приводит к противоречию. Действительно, энтропия должна всегда возрастать, то есть должна расти неупорядоченность живой системы. В то же время мы хорошо знаем, что все живые системы постоянно создают из беспорядка упорядоченность. В них создается и поддерживается физическое и химическое неравновесие, на котором основана работоспособность живых систем. В процессе развития каждого организма (онтогенеза), так же как и в процессе эволюционного развития (филогенеза), все время образуются новые структуры, и достигается состояние с более высокой упорядоченностью. А это означает, что энтропия (неупорядоченность) живой системы не должна возрастать. Таким образом, второй закон термодинамики, справед-ливый для изолированных систем, для живых систем, являющихся открытыми, неприменим.

В течение времени жизни живой системы ее элементы постоянно подвергаются распаду. Энтропия этих процессов положительна (возникает неупорядоченность).

Для компенсации распада (компенсации неупорядоченности) должна совершаться внутренняя работа в форме процессов синтеза элементов взамен распавшихся. А это означает, что эта внутренняя работа является процессом с отрицательной энтропией (такие процессы называют негэнтропийными, а отрицательную энтропию – негэнтропией). Негэйнтропийный процесс проти-водействует увеличению энтропии системы, которое связано с процессом распада, и создает упорядоченность.

Источником энергии для совершения негэнтропийной внутренней работы являются:

Для организмов – гетеротрофов (питающихся только органической пищей) – энергия в виде химических связей и низкая энтропия поглощаемых высокоструктурированных органических веществ. В этом случае поглощаемые пищевые вещества обладают большей упорядоченностью (меньшей энтропией), чем выделяемые продукты обмена. Организмы гетеротрофы переносят упорядоченность (негэнтропию) из питательных веществ в самих себя.

Для организмов – автотрофов (самостоятельно синтезирующих для себя питательные веще-ства из неорганических соединений с участием солнечного излучения) – энергия солнечного света, представляющего электромагнитное излучение с низкой энтропией.

Таким образом, обмен веществ с точки зрения термодинамики необходим для противодей-ствия увеличению энтропии, обусловленному необратимыми процессами в живой системе.

Если рассматривать систему «живой организм плюс среда», из которой берутся питательные вещества и в которую отдаются продукты обмена, то второй закон термодинамики справедлив: энтропия этой системы возрастает и никогда не уменьшается. Это означает, что живая система создает внутри себя упорядоченность за счет того, что она уменьшает упорядоченность в окружающей среде.

Итак, живая система является открытой системой, и ее энтропия не возрастает, как это имеет место в изолированной системе. Это означает, что живая система постоянно совершает работу, направленную на поддержание своей упорядоченности, и находится в неравновесном стационарном состоянии. Производство энтропии при этом минимально.

Таким образом, с позиций термодинамики можно утверждать, что живым системам присущи процессы, уменьшающие энтропию систем и, следовательно, поддерживающие их организованность.

Следующий вопрос заключается в том, как реализуются процессы самоуправления и самоорганизации живых систем. Этот вопрос, прежде всего, связан с рассмотрением жизни как информационного процесса. Недаром кибернетика определена ее создателем Н. Винером как «наука об управлении и передачи информации в живых организмах и машинах».




<== предыдущая лекция | следующая лекция ==>
РОЛЬ ЭНТРОПИИ В БИОСИСТЕМАХ | 

Дата добавления: 2015-08-29; просмотров: 1778. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2024 год . (0.067 сек.) русская версия | украинская версия