Студопедия — Азотный термодинамический цикл работы двигателей внутреннего сгорания
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Азотный термодинамический цикл работы двигателей внутреннего сгорания






Двигатели внутреннего сгорания (ДВС) являются наиболее массовыми энергосиловыми установками. Поэтому кажется естественным, что именно в ДВС впервые были получены режимы работы, соответствующие азотной реакции. Это были двигатели гоночных машин и мотоциклов, на которых вдруг мощность (и скорость) существенно росла при том же, или даже при меньшем расходе топлива. На выхлопе содержание азота и углекислого газа было снижено, а доля водяного пара существенно повышена. Несмотря на более чем двадцатилетний период единично-индивидуальной настройки серийных легковых автомобилей на азотную реакцию, до сих пор нет даже демонстрационного образца, а результаты – для нескольких десятков машин – весьма нестабильны. Это можно объяснить отсутствием до недавнего времени теории, да еще в соединении со сложностями практики.

Лучшие образцы автомобилей ездят с настройкой на азотную реакцию 10…11 лет. Расход топлива снижен до 5…6 раз. Легкое топливо может быть заменено более тяжелым, вплоть до дизтоплива и керосина. Улучшаются динамические характеристики (разгон…). Отмечается бесшумная и более мягкая работа двигателя, снижение температуры охлаждающей жидкости.

Рассмотрим рабочий процесс (с азотной реакцией) на примере карбюраторного двигателя, так как примеры для дизельного и инжекторного двигателей отсутствуют. Итак, по окончании выпуска газов и продувки происходит всасывание топливовоздушной смеси в цилиндр двигателя при движении поршня вниз. Затем на такте сжатия при движении поршня вверх происходит повышение температуры и давления смеси в цилиндре двигателя. При некотором угле опережения зажигания штатно включается свеча и под действием электрического разряда (искры) происходит воспламенение смеси.

Далее следует описать необычности. Угол опережения зажигания устанавливается на 400…500 до верхней мертвой точки (ВМТ) поршня. В нормальных двигателях это привело бы к стукам, поломкам или обратному ходу поршня. В азотном двигателе, если его так можно назвать, этого не происходит по следующим причинам. Под действием катализатора, электрического разряда, электромагнитного импульса, параметров смеси, в плазме воспламенившейся смеси начинается азотная реакция: распад азота, кислорода и взаимодействие с ними электронов – генераторов энергии. При этом часть водяного пара конденсируется на стенках цилиндра, что уменьшает объем и давление парогазовой смеси в цилиндре. Направленное от стенки к центру (оси) цилиндра испарение влаги снижает и температуру в цилиндре. В то же время азотная реакция в микрозонах, особенно вблизи стенок цилиндра должна идти, так как катализатор имеется только на стенках. Образование мелкодисперсного твердого графита также уменьшает первоначальный объем газа и давление. То есть давление и температура должны достаточно резко снизиться, чтобы поршень преодолел угол опережения до ВМТ без препятствий. Кстати как такового электрического разряда, в принципе, не надо, так как достаточно электромагнитного импульса: были случаи, когда двигатель начинал работать при снятых проводах зажигания. При отсутствии искры не происходит и обычного воспламенения топливовоздушной смеси – это тоже оказывается лишним, так как топливо просто расщепляется под действием катализатора и электромагнитного импульса, как и молекулы воздуха.

Относительно холодная газовая среда в цилиндре двигателя при движении поршня от ВМТ вниз на следующем такте – расширении понижает давление, что, как мы знаем, способствует распаду молекул. И при некотором наиболее эффективном разрежении – вакууме в цилиндре опять происходит расщепление оставшейся части азота, кислорода, топлива под действием катализатора, который никуда из цилиндра не делся, и – электромагнитного импульса от штатной индукционной катушки. То есть возникает и выполняется азотная реакция с выделением энергии. Работа индукционной катушки на такте расширения предназначена для производства искры в другом цилиндре, но электромагнитный импульс (ЭМИ) от катушки распространяется в этот момент одновременно ко всем цилиндрам, в том числе, и в рассматриваемый, где происходит такт расширения. Поскольку такт расширения в энергетическом плане является решающим, вносящим основной вклад в энергетику двигателя, то "угол опережения зажигания", который как бы устанавливался для предыдущего такта – сжатия, на самом деле автоматически устанавливается для ЭМИ на такте расширения, и как "угол опережения зажигания" утрачивает смысл. Индицирование двигателя позволило бы установить все параметры. В связи с необходимостью разных углов подачи ЭМИ для разных тактов в одном цилиндре, и – разные для разных цилиндров в связи с неравномерностью, следует устанавливать углы подачи ЭМИ для разных тактов и цилиндров – индивидуально.

За расширением следует такт выпуска выхлопных газов, в котором большое значение имеют инжекторные выхлопные системы, обеспечивающие вакуум на выпуске и соответствующее увеличение съема энергии и улучшение продувки и последующего наполнения – увеличения воздушного заряда в цилиндре. Все это увеличивает мощность двигателя и снижает расход топлива.

В серийных двигателях со штатными вспомогательными системами вряд ли удастся вообще отказаться от топлива, но, как следует из опыта, можно существенно уменьшить его расход. При изменении вспомогательных систем, а особенно цилиндрово-поршневой группы возможно вообще избавиться от даже частичного использования органического топлива в ДВС.







Дата добавления: 2015-08-17; просмотров: 501. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия