Студопедия — Форма атомов и состав периодической системы химических элементов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Форма атомов и состав периодической системы химических элементов






Скажем сразу: состав устойчивых изотопов периодической системы химических элементов обусловлен, в конечном итоге, овалоидной формой атомов.

Кто-нибудь видел квадратную ягоду, например, арбуз? Природа этого не допускает. Капли воды принимают сферическую или близкую к ней форму за счет поверхностного натяжения. Поверхностное натяжение атомов, структурно состоящих из нейтронов, на четыре порядка выше, чем поверхностное натяжение воды. Не на 4 процента, не в 4 раза, а на 4 порядка: поэтому трудно представить, чтобы форма атомов была бы иной, чем сферическая или близкая к ней – овалоидная.

Поверхностное натяжение создается электростатическим взаимодействием нейтронов в атоме, как это описано в первой части книги, одинаковым со всех сторон атома симметрично относительно центра. Это и является причиной сферичности атома. Кроме того, из-за электродинамического взаимодействия между собой атомы находятся в колебательном и вращательном (в жидкостях и газах) движении внутри своих глобул. Вращательное движение требует тщательной балансировки атомов и молекул во избежание их разрушения под действием центробежных сил, в том числе, и твердых веществ, которые, все без исключения, бывают также в жидком и газообразном состояниях. Еще и поэтому атомы должны принимать форму вращения: сферическую, эллипсоидную или, в общем случае – овалоидную.

Согласно разработанной и изложенной в разделе о катализе простой методике количество нейтронов в однослойной сфере определяется отношением площади поверхности, занимаемой всеми нейтронами, к площади поверхности, занимаемой одним нейтроном.

При этом для существования сферы необходимо, чтобы количество нейтронов в слое и его диаметральном сечении было целочисленным. Именно эти два условия определяют состав устойчивых изотопов химических элементов, в частности, в Земных условиях. При отклонении числа нейтронов от их расчетного количества в сфере, атом принимает форму эллипсоида вращения или, в общем случае – овалоида; условия целочисленности количества нейтронов в слое и его диаметральном сечении и в этом случае должны обязательно быть выполненными, так как при дробном количестве нейтронов сфера или овалоид не могут устойчиво существовать.

Расчет и анализ показывают, что сферических атомов немного – всего тринадцать: однослойные – 12C, 20Ne, 28Si, 40Ar, 48Ti; двухслойные – 59Co, 74Ge, 84Kr, 106Pd, 132Xe; трехслойные – 180Hf, 195Pt, 222Rn. Многослойность атомов объясняется тем, что громадные электростатические силы поверхностного натяжения стремятся заполнить весь объем внутренней полости как только это становится возможным: когда в полости может разместиться хотя бы минимальная сфера 12C.

Остальные, не сферические, атомы, кроме атомов с атомным числом A<12, являются овалоидами с целым числом нейтронов в каждом слое: однослойные – с 14N по 52Cr; двухслойные – с 55Mn по 139La; трехслойные – с 181Ta и далее (до A<260).

Сферические атомы концентрируются в четвертой и восьмой группах, формируя определенную периодичность изменения свойств элементов. В частности элементы со сферическими и близкими к ним по форме атомами являются катализаторами, как наиболее прочные.

Устойчивые изотопы находятся в равновесии с действием полей (магнитное, гравитационное…) Земли; неустойчивые за определенное время становятся устойчивыми, распадаясь или достраиваясь до них. Причем оба этих процесса находятся в динамическом равновесии друг с другом аналогично, например, хорошо изученным процессам испарения – конденсации на поверхности воды /1/.


Литература

1.Андреев Е.И. Расчет тепло- и массообмена в контактных аппаратах. Л.: Энергоатомиздат, 1985.

2.Андреев Е.И. Механизм тепломассообмена газа с жидкостью. СПб.: Энергоатомиздат, 1990.

3.Базиев Д.Х. Основы единой теории физики. М.: Педагогика, 1994. С. 640.

4.Базиев Д.Х. Электричество Земли. М.: Коммерческие технологии, 1997.

5.Базиев Д.Х. Гиперчастотная теория кавитации. М.: Коммерческие технологии, 1999.

6.Бугаец Е.С. Свеча зажигания из космоса. Еженедельник «24 часа», № 39, 1999.

7.Беклемишев Ю.А., Беклемешева Г.Ю. Новое направление в энергетике. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996. С. 311–314.

8.Габович М.Д. Физика и техника плазменных источников ионов. М.: Атомиздат, 1972.

9.Глинка Н.Л. Общая химия. Л.: Химия, 1977. С. 183.

10. Канарев Ф.М. Вода – новый источник энергии. Краснодар, ГКАУ, 1999.

11. Колдамасов А.И. Ядерный синтез в поле электрического заряда. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996.

12. Макаров В. Летающие тарелки движет термояд. Еженедельник «24 часа», № 8, 1999.

13. Орир Дж. Физика. М.: Мир, 1981.

14. Пруссов П.Д. Явления эфира. Т. 1–4. Николаев: РИП Рионика, 1992–1994.

15. Смирнов А.П. Кризис современной физики. СПб.: Издательство «ПиК», 1999.

16. Сборник клуба ФЕНИД. Вып. 1, 1990.

17. Шахпаронов, И.М. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996. C. 176–187.

18. Отчет по результатам сравнительных испытаний электрических теплогенераторов типа ЮСМАР-1, ЭВП-03, ВЭО-15 и КТП для автономных нагревательных устройств. РКК «ЭНЕРГИЯ», М., 1997.

19. Патент РФ 2054604, 1996. Бюл. 5. Способ получения энергии / А.Ф. Кладов.

20. А. с. СССР 334405, 1970; Бюл. 12, 1972. Гидродинамическая установка для кавитационных испытаний / А.И. Колдамасов, В.А. Сударушкин.

21. Патент РФ 2045715, 1993 (опубл. 1995). Теплогенератор и устройство для нагрева жидкости. / Ю.С.Потапов.

22. Патент Украины 7205 А, 1997. Тепловой преобразователь мощности. / ЗАО «Энергоресурс», Донецк..

23. Патент РФ 2179649, 2000. Способ повышения энергии рабочей среды для получения полезной работы / Е.И. Андреев, А.П. Смирнов, Р.А. Давыденко.


 








Дата добавления: 2015-08-17; просмотров: 505. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия