Студопедия — Элементы квантовой механики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы квантовой механики

1. Петрик О.А. Стан та перспективи розвитку аудиту в Україні: методологічні та організаційні аспекти: Дис… д-ра економ. наук. Київський національний економічний університет. – К., 2004

2. Давидов Г.М, Формування теоретичних основ аудиту: Дис… д-ра економ. наук. Кіровоградський національний технічний ун-т. –К., 2007

3. Адамс Р. Основи аудиту - М.: Аудит; ЮНИТИ, 1995. – 398 с.

4. Аренс А., Лоббек Дж. Аудит - М.: Финансы и статистика,1995. – 558 с.

5. Робертсон Дж. Аудит - М.: КРМС: Контакт, 1993. – 496с.

6. Дорош Н.І. Аудит: теорія і практика. – К.: Знання, 2006. – 495с.

7. Гетокова Л.М., Скородумов В.А., Чепик Н.А. Аудит и сопутствующие услуги. – СПБ.: Узд-во СПБГНЄФ, 2010. – 208 с.

8. Гончарук Д.А.,Рудницький В.С. Аудит. – Київ.: Знання, 2007. – 443 с.

9. Соколов Я.В. Десять постулатов аудита // Бухгалтерский учёт. – 1993. - №11. – с.36-38

10. Шалімова Н.С. Причини виникнення та фундаментальні принципи аудиту з позиції моделі людини та проблеми конфлікту інтересів// Збірник наукових праць Кіровоградського національного технічного університету. – Вип.21, 2012р.

11. Козер Л. Функции социального конфликта. – М.: Идея – Пресс, 2000. – 128с.

12. Бабесов Е.М. Конфликтология. – Минск.: Право и экономика, 1997. – 360с.

13. Протасов В.Н. Правоотношения как система. – М.: Юридлит, 1991. – 342с.

14. Кудрявцев В.Н. Правовое поведение: норма и патология. – М.: Наука, 1980. – 231с.

15. Лень В.С., Нехай В.А. Облік і аудит. Вступ до фаху. – К.: Центр учбової літератури, 2009. – 256с.

16. Честнов И.Л. Методология и методика юридического иследования. – Спб, 2004. – 128с.

17. Міжнародні стандарти контролю якості, аудиту, огляду, іншого нодання

 

Элементы квантовой механики

Волновые свойства вещества. В результате развития представлений о природе света выяснился его двойственный характер (дуализм). Одни явления могут быть объяснены в предположении, согласно которому свет представляет собой поток частиц – фотонов (фотоэффект, эффект Комптона). Другие – в предположении, согласно которому свет является волной (интерференция, дифракция).

В 1924 г. Луи де Бройль, предполагая наличие в природе симметрии, выдвинул гипотезу, что дуализм не является особенностью одного света, что он свойственен всей материи (электронам и любым другим частицам). Согласно де Бройлю, с каждой микрочастицей связывается, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны – волновые характеристики – частота w и волновой вектор k (). Количественные соотношения, связывающие корпускулярные и волновые характеристики, принимаются для частиц такими же, как для фотонов

, . (7)

Гипотеза де Бройля вскоре была подтверждена экспериментально. Дэвиссон и Джермер исследовали в 1927 г. отражение электронов от монокристалла никеля, принадлежащего к кубической системе (рис). Рассеяние электронов проявляет отчет­ливый дифракционный характер. Положение дифракционных максимумов соответст­вовало формуле Вульфа-Брегга, если длину волны электрона вычислить согласно (7).

В дальнейшем идея де Бройля была подтверждена опытами Г. Томсона и П.С. Тартаковского. В опытах пучок электронов, ускоренный электрическим полем, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Получен­ная таким образом картина сопоставлялась с полученной в аналогичных условиях рентгенограммой. В результате было установлено полное сходство двух картин.

Так как дифракционная картина исследовалась для потока электронов, необходимо было доказать, что волновые свойства связаны с электроном, а не являются коллективным эффектом. Это экспериментально установил В.А. Фабрикант. Он показал, что и в случае слабого электрического пучка, когда каждый электрон прохо­дит прибор поодиночке, дифракционная картина при достаточной экспозиции ничем не отличается от картины, какая наблюдается при обычной интенсивности пучка.

Гипотеза де Бройля и ее экспериментальное подтверждение требует качественно нового взгляда на природу микрочастиц – микрочастицу нельзя считать ни частицей, ни волной в классическом понимании. Необычные свойства микрочастиц можно понять, если предположить, что вакуум является особым состоянием материи, а микрочастицы ее относительно неустойчивыми локальными состояниями. Неустойчивым в том смысле, что микрочастица регулярно растворяется в вакууме и через мгновенье вновь возникает где-то рядом. Аналогией вакууму может служить насыщенный раствор какого-либо вещества, а микрочастице имеющиеся в растворе кристаллики этого вещества. В состоянии динамического равновесия кристаллики в растворе хаотично растворяются и возникают. На характер растворения-возникновения микрочастицы влияет ее окружение. Несмотря на сложность и элемент случайности всего происходящего, поведение микрочастицы, как выяснится позже, можно успешно описать с помощью так называемой волновой функции.

Принцип неопределенности. В классической механике состояние материальной точки определяется заданием значений координат, импульса, энергии и т.д. Перечисленные величины называются динамическими переменными. Так как микрочастица не является частицей в классическом понимании, то ей, строго говоря, не могут быть приписаны указанные динамические переменные.

Данное обстоятельство проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Так, например, электрон не может иметь одновременно точных значений координаты x и компоненты импульса . Неопределенности значений x и удовлетворяют соотношению

. (8)
Соотношение, аналогичное (8), имеет место и для y и , для z и , а также для ряда других пар величин (называемых канонически сопряженными). Соотношение (8) и подобные ему называются соотношением неопределенностей Гейзенберга. Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей

. (9)
Это соотношение означает, что если время перехода системы из одного состояния в другое характеризуется временем D t, то неопределенность энергии системы равна . Процесс измерения энергии сопровождается изменением состояния. Поэтому, неопределенность результата измерения D E связана с длительностью измерения D t (т.е. временем перехода системы из одного состояния в другое) соотношением (9).

Соотношение неопределенностей вытекает из волновых свойств микрочастиц (строгий формальный расчет лежит вне рамок данного курса). Поясним его на следующем примере. Пусть поток электронов проходит через узкую щель шириной D x, расположенную перпендикулярно к направлению их движения. При прохождении электронов за щелью наблюдается дифракционная картина, как в случае плоской световой волны. Основная доля электронов приходится на область центрального максимума.

До прохождения электроны двигались вдоль оси y, поэтому , а координата являлась совершенно неопределенной. Прохождение щели сопровождается изменением состояния электрона. В новом состоянии неопределенность положения по оси x задается шириной щели. Вследствие дифракции частица будет обладать импульсом, распределенным с близкими вероятностями в пределах угла 2j, где j – угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность

.
Первому минимуму при дифракции от щели соответствуют угол j, для которого

,
где l длина волны де Бройля. Отсюда с учетом (7) получается соотношение


согласующееся с (8).

Основные понятия квантовой механики. Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма стимулировали развитие квантовой теории, которое привело к созданию законченной теории.

Прежде всего, следует дать физическую интерпретацию волн де Бройля. С этой целью сравним дифракцию световых волн и микрочастиц. Дифракционная картина световых волн образуется в результате интерференции вторичных волн. В свете волновых представлений, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям корпускулярной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифрак­ционной картины. Если принять, что число фотонов в данном месте (а для одного фотона вероятность обнаружения) пропорционально квадрату светового вектора, то два способа описания становятся согласованными и дополняющими друг друга.

Дифракционная картина для микрочастиц имеет сходный вид с дифракционной картиной световых волн. Наличие максимумов с точки зрения волновой теории соответствуют наибольшей интенсивности волн де Бройля. Интенсивность волн де Бройля коррелирует с числом частиц в данной точке пространства. Таким образом, напрашивается вероятностная, как для световых волн, трактовка волн де Бройля: вероятность обнаружения микрочастицы пропорциональна интенсивности волны де Бройля (квадрату модуля волновой функции).

Необходимость вероятностного подхода к описанию микрочастиц является принципиальным положением квантовой теории. Постулируется, что состояние квантовой системы может быть максимально полно описано с помощью волновой функции, в общем случае комплексной. В случае микрочастицы, не имеющей внутренних степеней свободы, эта функция имеет вид . Вероятность dP обнаружения микрочастицы в пределах объема dV

.
В квантовой механике принимается, что волновые функции, отличающиеся только множителем, описывают одно и то же состояние. Это обстоятельство позволяет ввести условие нормировки на пси-функцию

.
Для нормированной пси-функции квадрат ее модуля дает плотность вероятности нахождения частицы в соответствующем месте пространства

.

По своему смыслу, волновая функция должна удовлетворять ряду так называемых стандартных условий. Она должна быть однозначной, непрерывной (вероятность не может изменяться скачком), конечной (требование условия нормировки). Подобные условия накладываются и на производные волновой функции.

Одним из основных положений квантовой механики является принцип суперпозиции состояний. Если система может находиться в состояниях, описываемых волновыми функциями , , …, , то она также может находиться в состоянии

, (10)
где – произвольные комплексные числа.

Волновая функция Y содержит в себе полную информацию о микрообъекте. Поэтому, зная Y, можно вычислить вероятности значений, которые получаются при измерении какой-либо физической величины (а значит и их средние) в этом состоянии. Например, среднее значение координаты x вычисляется по формуле

. (11)

В квантовой механике принимается, что измерение физической величины q даст некоторое значение . Совокупность или спектр возможных значений называются собственными значениями величины q. Обозначим волновую функцию системы в состоянии, в котором величина q всегда имеет определенное значение , через . Волновые функции называются собственными функциями данной величины q. Каждая из этих функций предполагается нормированной

.

Если система находится в некотором произвольном состоянии с волновой функцией Y, то в соответствии с принципом суперпозиции, она должна представлять собой комбинацию собственных функций в виде (10). Утверждается, что квадраты модулей дают вероятности того, что при измерении будет получено соответствующее значение величины . Последовательно рассуждая, можно установить, что собственные функции взаимно ортогональны

.
Зная вероятности различных значений величины q, ее среднее значение в состоянии Y вычисляется по формуле

.

В квантовой механике вводится понятие оператора. Так называется матема­тическая операция, с помощью которой одной функции ставится в соответствие другая

,
где – символическое обозначение операции (оператора). Оператор физической величины определяется посредством соотношений

(для всех n),
где –собственное значение q. Свойство ортогональности собственных функций позволяет записать

.
Формула (11) является выражением такого типа. Можно доказать, что оператор является эрмитовым

.




<== предыдущая лекция | следующая лекция ==>
Результати | Постулаты

Дата добавления: 2015-08-30; просмотров: 288. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия