Студопедия — Алгоритм сжатия с использованием кодов Хаффмана
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм сжатия с использованием кодов Хаффмана






 

Данный алгоритм (далее для краткости - алгоритм Хаффмана) был разработан в 1952 году и относится к группе статистических методов сжатия. Статистические методы используют различные приёмы для того, чтобы наиболее часто встречающимся символам соответствовали более короткие коды. При этом каждый код однозначно соответствует конкретному символу. Например, в тексте на русском языке буква а встречается гораздо чаще, чем буква ы, поэтому имеет смысл присвоить букве а более короткий код. Соответственно выходной поток этих методов является бит-ориентированным, т.е. не форматированным по границам байтов. Статистические методы работают медленнее словарных, но достигают, как правило, более высокой степени сжатия. Они используют три основных модели для набора статистики (определения вероятностей символов):

- неадаптивную;

- полуадаптивную;

- адаптивную.

 

В неадаптивных моделях вероятности всех символов алфавита определены заранее. Эта модель обычно применяется только при сжатии текстовых файлов. В полуадаптивных моделях входные данные обрабатываются за 2 прохода: 1-й – для подсчёта вероятностей, 2-й – собственно для сжатия. Эта модель может применяться для сжатия не очень больших изображений. Адаптивные модели вычисляют и корректируют вероятности символов в процессе сжатия, т.е. «на лету». Модели последнего типа сложнее предыдущих, зато являются более универсальными и часто дают наилучшее сжатие.

Рассмотрим кодирование по Хаффману более подробно. Предположим, что вероятности (их заменят частоты) всех символов алфавита уже подсчитаны одним из вышеописанных способов. Тогда:

1. Выписываем в ряд все символы алфавита в порядке убывания вероятноcтей (частоты) их появления в потоке данных (для удобства построения дерева);

2. Объединяем два символа с наименьшими вероятностями в новый составной символ, вероятность которого определяется как сумма вероятностей составляющих его символов. Последовательно повторяем эту операцию до образования единственного составного символа (корня). В результате получается дерево символов, каждый узел которого имеет суммарную вероятность всех объединённых им узлов.

3. Прослеживаем путь от каждого листа дерева к корню, помечая направление движения к каждому узлу (например, вверх/направо –1, вниз/налево - 0). При этом не важен конкретный вид разметки «ветвей» дерева (т.е. помечать направление вверх/направо –1, вниз/налево – 0, или наоборот), но важно придерживаться выбранного способа разметки ко всем «ветвям» дерева.

4. Получившиеся двоичные комбинации, записанные от конца к началу и формируют коды Хаффмана.

 

 

Полученный коэффициент сжатия подсчитывается по следующей формуле

, (2)

где

n – количество бит, необходимое для кодирования символов алфавита фиксированным числом разрядов;

 

- вероятность (частота) повторения символа во входном потоке;

- количество бит в коде Хаффмана для символа .

 

Коды Хаффмана никогда не увеличивают, а чаще всего наоборот, уменьшают среднюю длину кодовых слов для символов в цепочке данных. Поэтому сжатие с применением кодов Хаффмана, всегда имеет коэффициент ³ 1, причём знак равенства получается только в том случае, когда вероятности всех символов во входном потоке одинаковы.

Пример кодирования по Хаффману приведен на рис. 3.

 

Примечание:

1) для удобства расчётов при выполнении практической части, дробное значение частоты символа можно заменить целым числом появлений данного символа в цепочке, поэтому в корне дерева получится не 1 (сумма частот), а значение, равное длине цепочки. В этом случае коэффициент сжатия рассчитывается по формуле

, (3)

где

Kобщее количество символов во входном потоке;

– количество символов во входном потоке.

2) частоты появления символов в примере расположены не по убыванию исключительно ради наглядности внешнего вида «дерева», т.к. в противном случае ветви пересекались бы между собой. Несмотря на то, что коды Хаффмана в обоих случаях могут отличаться, это не имеет значения, поскольку сохранится свойство однозначности кодов Хаффмана, т.е. ни один из кодов не совпадет с начальными битами другого, более длинного кода.

Рис.3. Пример кодирования по Хаффману.

 

Если предположить, что входной поток символов был байт-ориентированным, то n =8. Тогда коэффициент сжатия

Если считать входной поток символов бит-ориентированным с равным количеством бит под каждый символ, то n =4 (т.к. для кодирования 10 различных символов a-j требуется разряда). В этом случае будет означать выигрыш, полученный от применения кодов Хаффмана по сравнению с кодами фиксированной, минимально необходимой битовой размерности. В этом случае

Кодирование по Хаффману может использоваться при сжатии изображений как самостоятельно, так и в составе других алгоритмов сжатия, например LZW и JPEG (это наиболее эффективное его применение).

 

Контрольные вопросы

 

1. В чем отличие растровых и векторных форматов хранения данных?

2. Что такое палитра и в каких случаях она применяется?

3. Что такое информационная избыточность и каких видов она бывает?

4. В каких случаях коэффициент сжатия оказывается меньше единицы?

5. Что необходимо для эффективного сжатия по алгоритму LZW?

6. Может ли кодирование по Хаффману дать ? Почему?







Дата добавления: 2015-08-30; просмотров: 2273. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия