Студопедия — Расчет статических и динамических характеристик для разомкнутой системы регулируемого электропривода
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет статических и динамических характеристик для разомкнутой системы регулируемого электропривода






Расчет естественных механических и электромеханических характеристик системы регулируемого электропривода

При создании электроприводов с двигателями переменного тока часто сталкиваются с проблемой определения параметров асинхронного двигателя, которые необходимы для проектирования и настройки системы управления электроприводом, а также для моделирования переходных процессов в асинхронном электроприводе с ТРН.

Одним их возможных вариантов определения параметров АД является метод использования конструктивных параметров электрической машины, но он обладает существенным недостатком, который заключается в том, что разработчикам электропривода эти параметры не всегда доступны, и, кроме того, необходимо располагать соответствующими методиками расчёта.

Для расчета электромеханических и механических характеристик асинхронного двигателя необходимо воспользоваться его математической моделью, которая в общем случае представляется различными схемами замещения. Наиболее простой и удобной для инженерных расчетов асинхронного двигателя является Т-образная схема замещения, рис.6.

Рис.6. Схема замещения асинхронного двигателя.

 

 

Ток холостого хода асинхронного двигателя можно найти по следующему выражению:

, (2.1)

где

- номинальный ток статора двигателя;

- ток статора двигателя

при частичной загрузке;

Коэффициент мощности при частичной загрузке

;

Коэффициент загрузки двигателя

.

Коэффициент мощности и КПД при частичной загрузке в технической литературе приводятся редко, а для целого ряда серий электрических машин такие данные в справочной литературе отсутствуют. Эти параметры можно определить, руководствуясь следующими соображениями:

современные асинхронные двигатели проектируются таким образом, что наибольший КПД достигается при загрузке на 10-15% меньше номинальной. Двигатели рассчитываются так потому, что большинство из них в силу стандартной дискретной шкалы мощностей работают с некоторой недогрузкой. Поэтому КПД при номинальной нагрузке и нагрузке практически равны между собой, т.е.

− коэффициент мощности при той же нагрузке значительно отличается от коэффициента мощности при номинальной нагрузке, причем это отличие в значительной степени зависит от мощности двигателя.

- КПД при частичной загрузке;

Из формулы Клосса определяем соотношение, которое необходимо для расчета критического скольжения:

,

где - значение коэффициента b находится в диапазоне 0,6 – 2,5, поэтому в первом приближении принимаем b =1.

;

Определяем коэффициент:

.

Тогда активное сопротивление ротора, приведенное к обмотке статора асинхронного двигателя

;

Активное сопротивление статорной обмотки можно определить по следующему выражению

Определим параметр g, который позволит найти индуктивное сопротивление короткого замыкания :

.

Тогда

,

Для того чтобы выделить из индуктивного сопротивления ХКH сопротивления рассеяния фаз статора и ротора, необходимо воспользоваться соотношениями, которые справедливы для серийных асинхронных двигателей.

Индуктивное сопротивление роторной обмотки, приведенное к статорной, может быть рассчитано

,

Индуктивное сопротивление статорной обмотки может быть определено по следующему выражению

,

По найденным значениям переменных С1, , R1 и определим критическое скольжение

.

Согласно векторной диаграмме ЭДС ветви намагничивания , наведенная потоком воздушного зазора в обмотке статора в номинальном режиме, равна

,

Тогда индуктивное сопротивление намагничивания

.

Используя параметры схемы замещения, произведем расчет механических и электромеханических характеристик.

Электромеханическая характеристика при частотном управлении АД, определяется зависимостью приведенного тока ротора от скольжения

, (2.2)

 

где - фазное напряжение обмоток статора асинхронного двигателя;

- относительное значение частоты питающего напряжения.

Задаваясь значениями скольжения можно рассчитать соответствующее значение тока и воспользовавшись формулой получить соответствующее значение угловой скорости.

Полагая, что ток намагничивания двигателя имеет полностью реактивный характер, выражение для электромеханической характеристики, описывающей зависимость тока статора от скольжения, запишется следующим образом

,

где будет меняться в зависимости от величины питающего напряжения, согласно выражению

,

.

 

Задаваясь скольжением и принимая во внимание, что для естественной характеристики по формуле (2.2) рассчитываем естественные электромеханические характеристики АД в двигательном и генераторном режимах, приведенные на рис.7. Сплошной линией представлена зависимость , а пунктирной линией зависимость .

Рис.7 Естественные электромеханические характеристики АД

Механическую характеристику асинхронного двигателя при переменных значениях величины и частоты напряжения питания можно рассчитать по следующему выражению

. (2.3)

Механическая характеристика асинхронного двигателя имеет критический момент и критическое скольжение, которые определяются по следующим формулам (2.4) и (2.5)

(2.4)

где

- синхронная угловая скорость;

- фазное напряжение обмоток статора асинхронного двигателя.

Ом - индуктивное сопротивление короткого замыкания.

. (2.5)

Знак (+) означает, что критический момент и скольжение относятся к двигательному режиму, знак (-) – к генераторному режиму.

Расчет механической характеристики проводим по формуле Клосса:

, (2.6)

где

- коэффициент, равный отношению активного сопротивления статора к активному приведенному сопротивлению ротора;

- номинальная скорость;

- номинальный момент;

На рис.8 представлена естественная механическая характеристика для асинхронного двигателя.

Рис.8 Естественная механическая характеристика АД

Рабочий участок естественной характеристики обладает высокой жесткостью, модуль которой при практически постоянен, а при с возрастанием момента двигателя постепенно уменьшается и при становится равным нулю. Дальнейшее снижение скорости приводит к уменьшению электромагнитного момента, что соответств.,изменению знака статической жесткости , которая становится положительной. Этот участок характеристики вплоть до обычно не используется, и форма характеристики в этой области для таких двигателей существенного значения не имеет. Как показано на рис.7, двигательному режиму работы соответствуют скольжения от до .

Если ротор двигателя вращать против поля (, ), двигатель переходит в тормозной режим противовключения. В этом режиме на естественной характеристике поток снижен, весьма мал, поэтому двигатель развивает небольшие значения тормозного момента, потребляя из сети в основном реактивный ток, превышающий номинальный в 5-10 раз. Поэтому режим противовключения на естественной характеристике двигателя также на практике не используется.

Область () соответствует генераторному режиму работы параллельно с сетью. При ,подводимая к двигателю механическая энергия частично теряется в двигателе в виде теплоты, а в основном отдается в сеть. Однако при дальнейшем возрастании скорости и соответствующем увеличении частоты тока ротора происходит постепенное уменьшение коэффициента мощности двигателя, который при становится равным нулю. При скорости , соответствующей , отдаваемая в сеть активная мощность равна нулю, т. е. вся подведенная к двигателю механическая энергия теряется в виде теплоты в двигателе. Поэтому при имеет место режим рекуперативного торможения, при наступает режим динамического торможения, а при двигатель начинает потреблять энергию из сети, как и при режиме противовключения.

 

Электромеханические естественные характеристики асинхронного двигателя и показаны на рис.7. Зависимость построена с помощью соотношения (сплошная кривая). В ней отражены все рассмотренные выше особенности зависимости Кривая в основном повто­ряет форму кривой так как определяется соотношением . Она показана на рис.7, штриховой кривой, которая имеет наиболее значительные отклонения от кривой в области идеального холостого хода. Действительно, при ток ротора равен нулю, а статор потребляет из сети ток холостого хода , основной сос­тавляющей которого является намагничивающий ток По мере роста тока ротора эти кривые сближаются.

Двигатель с фазным ротором благодаря выведенным на контактные кольца выводам роторной обмотки обеспечивает возможность изменения параметров цепи ротора путем введения различных добавочных сопротивлений. Наиболее широко используется включение в цепь ротора добавочных активных сопротивлений, как показано на При этом в соответствии с максимум момента Мк не пре­терпевает изменений, а критическое скольжение увеличивается пропорционально суммарному сопротивлению ро­торной цепи . Рассматривая эти характеристики, можно установить, что введение добавочных активных сопротивлений в цепь ротора при пуске двигателя и при торможении противовключением является эффективным средством ограничения тока и по­вышения момента двигателя. Переключением сопротивлений можно обеспечить работу двигателя во всех режимах в пре­делах рабочего участка механических характеристик. В част­ности, плавным уменьшением сопротивления тор­можении противовключением и последующем пуске в проти­воположном направлении можно обеспечить постоянство тор­мозного, и пускового моментов двигателя в этих режимах.

Модуль жесткости рабочего участка механической характе­ристики при введении сопротивления находится при данном М в обратно пропорциональной зависимости от поэтому реостатные характеристики двигателя при больших добавоч­ных сопротивлениях имеют невысокую жесткость.

 

 







Дата добавления: 2015-08-17; просмотров: 1914. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия