Студопедия — Министерство образования Республики Беларусь 7 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Министерство образования Республики Беларусь 7 страница






О

 

4.3. Решение типового варианта контрольной работы N 3

 

Задача 3.1. Найти градиент и уравнения касательной плоскости и нормали к заданной поверхности в точке .

 

.

 

Решение. Обозначим

Тогда

 

 

 

;

 

.

 

Величина градиента

 

.

 

Уравнение касательной плоскости, имеющей нормальный вектор (7,-4,-19) и проходящей через , запишется

 

,

или

.

 

Нормальная прямая имеет направляющий вектор (7,-4,-19) и проходит через , поэтому ее уравнения

 

.

 

Задача 3.2. Найти наибольшее и наименьшее значения функции в области D, ограниченной заданными линиями:

 

 

Решение. Область D показана на рисунке (треугольник OAB).

 

y

B(0,6)


 

D

 

 

1 С

0 2 A(3,0) x

 

 

Cтационарные точки являются решениями системы уравнений

 

,

 

откуда находим точку , принадлежащую, как видно из рисунка, области . В этой точке . (2)

Исследуем функцию на границе области D.

Отрезок ОА. Здесь и Стационарные точки определяются из уравнения откуда В этой точке

 

. (3)

На концах отрезка

 

, . (4)

 

Отрезок АВ. Здесь и Из уравнения находим и

 

. (5)

 

При имеем

. (6)

 

Отрезок ОВ. Здесь Поскольку при функция не имеет стационарных точек. Значения ее при были вычислены в (4), (6).

Из результатов (2)-(6) заключаем, что

 

 

причем наибольшее значение достигается в точке А(3,0), наименьшее - в точке С(2,1).

 

 

Задача 3.3. Найти полный дифференциал функции

 

Решение. Частные производные равны

 

Поэтому

.

 

Задача 3.4. Найти частные производные второго порядка функции

Решение. Сначала находим частные производные первого порядка:

 

 

Затем, дифференцируя найденные частные производные, получим частные

производные второго порядка данной функции:

 

 

 

 

 

 

 

Задача 3.5. Вычислить значение производной сложной функции

 

где

,

 

при с точностью до двух знаков после запятой.

 

Решение. Так как сложная функция зависит от одной переменной через промежуточные переменные и , которые в свою очередь зависят от одной переменной то вычисляем полную производную этой функции по формуле

 

.

 

 

.

 

Вычислим и при :

 

 

.

 

Подставим значения в выражение производной. Получим

 

.

 

 

4.4. Решение типового варианта контрольной работы № 4

 

Задача 4.1. С помощью интегрирования по частям вычислить неопределенный интеграл от функции вида

Решение. Поскольку

 

 

искомый интеграл равен

 

 

Задача 4.2. Вычислить неопределенный интеграл с помощью разложения на простейшие дроби подынтегральной функции

Решение. Поскольку степень многочлена в числителе не меньше степени знаменателя, следует выполнить деление:

 

.

 

Правильную дробь разложим на простейшие дроби

 

.

 

Методом неопределенных коэффициентов находим

 

,

откуда

.

 

Решая эту систему уравнений, имеем

.

 

Искомый интеграл равен

 

 

Задача 4.3. Вычислить с помощью подстановки неопределенный интеграл от функции .

Решение. Выполним подстановку Разрешая уравнение относительно , находим: .

Тогда искомый интеграл запишется:

Разлагая подынтегральное выражениe на простейшие дроби

 

 

и раскрывая скобки в равенстве

 

,

 

приходим к соотношению

 

 

 

Система уравнений относительно запишется

 

 

Решая ее методом Гаусса, находим

Искомый интеграл равен:

 

.

 

Задача 4.4. Вычислить с помощью подстановки неопределенный интеграл от функции .

Решение. Универсальной является подстановка для которой нетрудно проверить равенства

 

 

Поэтому искомый интеграл сводится к случаю интегрирования рациональной дроби

 

 

. (7)

 

Однако в ряде случаев более удобны подстановки:

 

(1) Тогда ;

(2) Тогда ;

(3) Тогда .

 

Подстановки 1,2 приводят к подынтегральным выражениям, содержащим радикал, и поэтому нецелесообразны. Для подстановки 3 приходим к интегралу, более простому, чем (7), и легко приводящемуся к табличному:

 

.

 

Задача 4.5. Вычислить площадь фигуры, ограниченной линиями:

 

а)

б)

 

Решение. а). Рассмотрим вспомогательную функцию на отрезке Площадь вычисляется по формуле

 

Исследуем Очевидно, что Поскольку

 

,

 

нетрудно проверить, что достигает в точке локального минимума, причем Кроме того, Поэтому наименьшее значение на [0,2], равное , положительно, и, значит, Имеем

 

 

Вычисляя интеграл по частям, находим

 

 

 

 

Поэтому

б). Здесь на Имеем , и, следовательно, меняет знак. Найдем интервалы, где она положительна или отрицательна. Отыскивая корни уравнения находим значение поэтому при и при Искомая площадь равна:

 

 

Вычисляем неопределенный интеграл

 

Тогда

 

 

 

Задача 4.6. Вычислить площадь, ограниченную кривой в полярной системе координат.

 

Решение. Кривая определена для тех значений из интервала (или ), при которых выполняется условие Неравенство имеет решения или

 

. (8)

 

Области (8) принадлежат интервалу при значениях т.е.

 

 

Площадь вычисляется по формуле

 

 

 

Вычисляя неопределенный интеграл

 

 

находим

 

.

 

Задача 4.7. Вычислить несобственный интеграл или доказать его расходимость.

 

Решение. Согласно определению несобственного интеграла с бесконечным пределом имеем

 

.

 

Поскольку корнями трехчлена в знаменателе будут то

 

.

 

Методом неопределенных коэффициентов находим , откуда Поэтому

 

 

Значение несобственного интеграла равно

.

 

Задача 4.8. Вычислить массу неоднородной пластины, ограниченной заданными линиями и имеющей поверхностную плотность

 

D:

 

Решение. Вид области показан на рисунке.

 

Y

8

 

 

y=8x2

X

0 D 1

 

 

y= -x

-2

 

 

Масса пластины запишется с помощью двойного интеграла







Дата добавления: 2015-09-19; просмотров: 381. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия