Студопедия — Тема: Вода и растворы.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема: Вода и растворы.






 

Многообразие координационных соединений обусловлено образованием изомеров – соединений одинаковых по составу, но отличающихся расположением лигандов вокруг центрального атома.

Гидратная (сольватная) изомерия обусловлена различным расположением молекул воды и анионных лигандов между внутренней и внешней сферами. Например, CrCl3∙6H2O существует по крайней мере в трех изомерных формах:
[Cr(H2O)6]Cl3 – трихлорид гексааквахрома (III+) – фиолетового цвета,
[CrCl(H2O)5]Cl2∙H2O – моногидрат дихлорид пентааквахлорохрома (III+) – сине-зеленого цвета,
[CrCl2(H2O)4]Cl∙2H2O – дигидрат хлорид тетрааквадихлорохрома (III+) – зеленого цвета.

Эти изомеры по-разному реагируют с раствором AgNO3. При действии AgNO3 фиолетовое соединение выделяет в осадок весь хлор, сине-зеленое – 2/3, а зеленое – только 1/3 хлора, имеющегося в соединении.

Ионизационная изомерия характеризуется различным распределением ионов между внешними и внутренними сферами комплексных соединений и, как следствие этого, различным характером диссоциации на ионы. Например, для соединения CoBrSO4∙5NH3 известны два изомера: [CoBr(NH3)5]SO4 – красно-фиолетового цвета и [CoSO4(NH3)5]Br – красного цвета.

Координационная изомерия заключается в различном распределении лигандов во внутренних координационных сферах. По-разному взаимодействуют с AgNO3 два изомера – [Co(NH3)6]∙[Cr(CN)6] и [Cr(NH3)6]∙[Co(CN)6]. Первое соединение дает осадок Ag3[Cr(CN)6], а второе – осадок Ag3[Co(CN)6].

Рисунок 3.1

Геометрическая изомерия (цис-транс изомерия) состоит в различном пространственном расположениии лигандов вокруг центрального атома. Так, [PtCl2(NH3)2] существует в виде двух изомерных форм, отличающихся друг от друга рядом свойств.

Оптическая изомерия. Оптическая изомерия характеризуется способностью вращать плоскость поляризации плоскополяризованного света. Два изомера отличаются друг от друга направлением вращения плоскости поляризации: один называют правым, другой – левым изомером. Правые и левые изомеры оказываются зеркальными изображениями друг друга и не могут быть совмещены в пространстве (рис. 3.2).

Из двух геометрических изомеров диэтилендиаминбромохлороникеля (II) только цис-изомер может существовать в виде двух оптических модификаций. Изомеры такого рода называются энантиомерами (рис. 3.3).

Рисунок 3.2
Рисунок 3.3

Основным признаком оптически активных соединений является отсутствие плоскостей симметрии, кроме зеркальной. При смешении оптических изомеров в растворе происходит их рацемизация, приводящая к потере способности такой эквимолярной смеси вращать плоскость поляризации света из-за образования эквимолекулярной смеси лево- (l) и правовращающих (d) изомеров.

Структурная изомерия. Структурными называют такие координационные изомеры, в которых происходит изменение симметрии (стереохимии) координационной сферы. Так, у бис (N-метилсалицилиденамината) никеля (II) наблюдается равновесие между плоским и псевдотетраэдрическим строением.

Рисунок 9.4

Частным случаем структурной изомерии, связанной с изменением спинового состояния центрального атома, является так называемая спиновая изомерия, при которой под воздействием внешних факторов (температуры, давления) происходит смена спинового состояния, приводящая к уменьшению межатомного расстояния центральный ион – донорный атом при переходе из высокоспинового в низкоспиновое состояние.

4.

В растворах КС имеет место первичная и вторичная диссоциация (в расплавах КС происходит их термическая диссоциация). Первичная диссоциация протекает по типу сильных электролитов - практически необратимо:

K4[Fe(CN)6] ® 4K+ + [Fe(CN)6]4-

[Co(NH3)6]Cl3 ® [Co(NH3)6]3+ + 3Cl-

Первичной диссоциации не подвергаются комплексы без внешней сферы: [Pt(NH3)2Cl2], [Co(NH3)3(NO3)3].

Вторичная диссоциация характеризует диссоциацию самого комплекса. Она протекает в незначительной степени, подчиняется закону действия масс. Этот процесс характеризуют константой диссоциации. Так как величина этой константы фактически определяет прочность комплекса, то ее обычно называют константой нестойкости (K). Вторичная диссоциация протекает по типу слабого электролита - обратимо и ступенчато:

[Ag(NH3)2]+ «[Ag(NH3)]+ + NH3

[Ag(NH3)]+ «Ag+ + NH3

В целях упрощения формы записи обычно записывают суммарное уравнение вторичной диссоциации:

[Ag(NH3)2] «Ag+ + 2NH3

Выражение константы нестойкости имеет вид:

Общая константа нестойкости комплекса равна произведению констант диссоциации по всем ступеням:

Величину, обратную константе нестойкости, называют константой устойчивости (bn).

Значения констант нестойкости, приводимые в справочниках, используют для характеристики устойчивости комплексов, нахождения концентраций частиц (комплекса, комплексообразователя, лигандов) в растворе КС, для определения направленности химических реакций с участием комплексных соединений и др. Например, равновесие в реакции:

[Ag(NH3)2]Cl + 2KCN = K[Ag(CN)2] + 2KCl + 2NH3

будет смещено вправо, так как Kнест.([Ag(NH3)2]+) = 9,3·10-8, а Kнест.([Ag(CN)2]-) = 8,0·10-22, т.е. второй комплексный ион значительно прочнее первого:

 

Тема: Вода и растворы.

План:

1. Вода в природе. Свойства воды.

2. Растворы.

3. Способы выражения состава раствора.

4. Гидраты и кристаллогидраты.

5. Растворимость.

6. Пересыщенные растворы.

7. Осмос.

8. Давление паров, растворов.

9. Замерзание и кипение растворов.

10. Буферные растворы.

1.

Вода—"весьма распространенное на Земле вещество. Почти три четвёртых поверхности земного шара покрыты водой, образующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы.

Природная вода не бывает совершенно чистой. Наиболее чистой является дождевая вода, но и она содержит незначительные количества различных примесей, которые захватывает из воздуха.

Количество примесей в пресных водах обычно лежит в пределах от 0,01 до 0,1 % (масс). Морская вода содержит 3,5 % (масс.) растворенных веществ, главную массу которых составляет хлорид натрия (поваренная соль).

Вода, содержащая значительное количество солей кальция и магния, называется жесткой в отличие от мягкой воды, на­пример дождевой. Жесткая вода дает мало пены с мылом, а на стенках котлов образует накипь.

Чтобы освободить природную воду от взвешенных в ней частиц, ее фильтруют сквозь слой пористого вещества, например, угли, обожженной глины и т. п. При фильтровании больших количеств воды пользуются фильтрами из песка и гравия. Фильтры задерживают также большую часть бактерий. Кроме того, для обезза­раживания питьевой воды ее хлорируют; для полной стерилизации воды требуется не более 0,7 г хлора на 1 т воды.

Фильтрованием можно удалить из воды только нерастворимые примеси. Растворенные вещества удаляют из нее путем перегонки (дистилляции) или ионного обмена.

Вода имеет очень большое значение в жизни растений, животных и человека. Согласно современным представлениям, само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

Физические свойства воды. Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе из твердого состояния в жидкое не уменьшается, как почти
у всех других веществ, а возрастает. При нагревании воды от 0до 4°С плотность ее также увеличивается. При 4 °С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.

Большое значение в жизни природы имеет и тот факт, что вода обладает аномально высокой теплоемкостью [4,18 Дж/(г-К)].

В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Это вытекает из принципа Ле Шателье. Таким образом, возрастание давления при О °С вызывает превращение льда в жидкость, а это и означает, что тем­пература плавления льда снижается.

Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине —ядро атома кислорода. Межъядерные расстояния О—Н близки к 0,1 нм, расстояние ме­жду ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кис­лорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а ос­тальные четыре электрона пред­ставляют собой две не поделенных электронных пары.

 

Атом кислорода в молекуле воды находится в состоянии 5р3-гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицатель­ному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных заря­дов неподеленных электронных пар атома кислорода, находящиеся на гибридных 5р3-орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.

По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды. Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% - это кластеры (структурированная вода).

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.

При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты — обломки структур льда, — состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких “ледяных” агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.

По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

Диаграмма состояния воды (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р—Т.

При температуре, отвечающей этой точке,—критической температуре— величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.

Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу.

Критические температура и давление для различных веществ различны. Так, для водорода = —239,9 °С, = 1,30 МПа, для хлора =144°С, =7,71 МПа, для воды = 374,2 °С, =22,12 МПа.

Молекулы воды отличаются большой устойчивостью к нагреванию. Однако при температурах выше 1000 °С водяной пар начинает разлагаться на составляющие воду водород и кислород. Процесс разложения вещества в результате его нагревания называется термической диссоциацией. Термическая диссоциация воды протекает с поглощением теплоты. Поэтому, согласно принципу равновесия французского учёного Ле Шателье, чем выше температура, тем в большей степени разлагается вода. Однако даже при 2000 °С степень термической диссоциации воды не превышает 2%, т.е. равновесие между газообразной водой и продуктами ее диссоциации — водородом и кислородом — все еще остается сдвинутым в сторону воды. При охлаждении же ниже 1000 °С равновесие практически полностью сдвигается в этом направлении.
Вода — очень реакционно способное вещество. Оксиды многих металлов и неметаллов соединяются с водой, образуя основания и кислоты; некоторые соли образуют с водой кристаллогидраты; наиболее активные металлы взаимодействуют с водой с выделением водорода.

Вода обладает также каталитической способностью. В отсутствие следов влаги практически не протекают некоторые обычные реакции; например, хлор не взаимодействует с металлами, фтороводород не разъедает стекло, натрий не окисляется в атмосферы воздуха.

Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так: называемые гидраты газов. Примерами могут служить соединения ксенона, хлора и углеводородов, которые выпадают в виде кристаллов при температурах от 0 до 24 °С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекулами газа (“гостя”) межмолекулярных полостей, имеющихся в структуре воды (“хозяина”); они называются соединениями включения или клатратами.

В клатратных соединениях между молекулами “гостя” и “хозяина” образуются лишь слабые межмолекулярные связи; включенная молекула не может покинуть своего места в полости кристалла преимущественно из-за пространственных затруднений Поэтому клатраты — неустойчивые соединения, которые могут существовать лишь при сравнительно низких температурах.

Клатраты используют для разделения углеводородов и благородных газов. В последнее время образование и разрушение клатратов газов (пропана и некоторых других) успешно применяется для обессоливания воды. Нагнетая в соленую воду при повышенном давлении соответствующий газ, получают льдоподобные кристаллы клатратов, а соли остаются в растворе. Похожую на снег массу кристаллов отделяют от маточного раствора и промывают, Затем при некотором повышении температуры или уменьшении давления клатраты разлагаются, образуя пресную воду и исходный газ, который вновь используется для получения клатрата. Высокая экономичность и сравнительно мягкие условия осуществления этого процесса делают его перспективным в качестве промышленного метода опреснения морской воды.

2.

Раствором называется твердая или жидкая гомогенная система, состоящая из двух или более компонентов (составных частей), относительные количества которых могут изменяться в широких пределах.

Всякий раствор состоит из растворенных веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем, конечно, является вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Однородность растворов делает их очень сходными с химическими соединениями. Выделение теплоты при растворении некоторых веществ тоже указывает на химическое взаимодействие между растворителем и растворяемым веществом. Отличие растворов от химических соединений состоит в том, что состав раствора может изменяться в широких пределах.

Кроме того, в свойствах раствора можно обнаружить многие свойства его отдельных компонентов, чего не наблюдается в случае химического соединения. Непостоянство состава растворов приближает их к механическим смесям, но от последних они резко отличаются своею однородностью.

Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Растворение кристалла в жидкости протекает следующим образом. Когда вносят кристалл в жидкость, в которой он может растворяться, от поверхности его отрываются отдельные молекулы. Последние благодаря диффузии равномерно распре­деляются по всему объему растворителя. Отделение молекул от поверхности твердого тела вызывается, с одной стороны, их собственным колебательным движением, а с другой, — притяжением со стороны молекул растворителя.

Тогда устанавливается динамическое равновесие, при котором в единицу времени столько же молекул растворяется, сколько и выделяется из раствора.

Раствор, находящийся в равновесии с рас растворяющимся веществом, называется насыщенным раствором.

3.

Насыщенные рас­творы применяют сравнительно редко. В большинстве случаев пользуются ненасыщенными растворами, содержащими мень­ше растворенного вещества, чем его содержит при данной температуре насыщенный раствор. При этом растворы с низким содержанием растворенного вещества называются разбавленными, с высоким — концентрированными.

Состав раствора (и, в частности, содержание в нем растворен­ного вещества) может выражаться разными способами — как с помощью безразмерных единиц (долей или процентов), так и че­рез размерные величины — концентрации.







Дата добавления: 2015-09-19; просмотров: 744. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия