Студопедия — Аналоговые оптические вычисления и процессоры
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналоговые оптические вычисления и процессоры






Когда речь идет об аналоговых оптических компьютерах, часто термин «аналоговый» употребляется в двух смыслах. Во-первых, он означает непрерывную величину, характеризующую каждую точку в окружающем пространстве (например, интенсивность света). Другими словами, какую бы точку в пространстве мы ни взяли, интенсивность света в этой точке изменяется непрерывно. Во-вторых, термин «аналоговый» означает, что объектом являются все точки непрерывных координат, а не дискретное (точечное) представление всей информации в окружающем пространстве, как это делается при обработке изображений в современных компьютерах.

Обсудим основные методы аналоговых вычислений, производимых в аналоговых оптических компьютерах, с использованием законов оптики. Прежде всего, обратимся к рис. 5, поясняющему, как с помощью светового луча можно выполнять хорошо знакомые всем операции сложения и умножения [1].

 

 

Рис. 5. Основные аналоговые оптические операции:

а — сложение; б — сложение с помощью линзы;

в — умножение на основе эффекта пропускания света;

г — умножение на основе эффекта отражения света.

 

Следует отметить, что указанные на рисунке простейшие операции сложения возможны лишь при использовании частично-когерентных световых пучков, сложение когерентных происходит с учетом фазовых характеристик – поскольку складываются не интенсивности, а амплитуды падающих волн.

Основными операциями аналогового оптического компьютера являются только две операции - сложение и умножение, однако одни лишь эти операции не позволяют выполнять сложные вычисления. Как уже упоминалось ранее, отличительным свойством светового излучения является способность к параллельной (одновременной) обработке больших объемов информации, однако для этого недостаточно использовать лишь свойство прямолинейного распространения света. Необходимо воспользоваться другими свойствами света, такими как преломление (рефракция) и дифракция, лежащими в основе работы линз и дифракционных элементов (решеток, голограмм). Как показано на рис.6, если перед линзой, например, с левой стороны (входная плоскость), поместить некоторый предмет, то с противоположной стороны мы получим перевернутое и уменьшенное изображение того же предмета. Аналоговая операция инвертирования и масштабирования произведена со скоростью света. Попробуйте провести такую же операцию с данным оптическим изображением (имеющим размер 6х12 см, обладающим 60000х120000 элементами разрешения, что соответствует минимально 7,2 Гб, используя программу, например, Adobe Photoshop).

 

 

Рис. 6. Операция инвертирования и масштабирования, выполняемая линзой при построении изображения.

 

Если входная и выходная плоскости оптической системы совпадают с передней и задней фокальной плоскостями сферической линзы и на вход такой системы поступает оптический сигнал U1(x1,y1), то на выходе появляется сигнал, связанный со входным сигналом следующим соотношением:

, (1)

где f – фокусное расстояние оптической системы, l - длина волны оптического сигнала, xH, yH - координаты в выходной плоскости системы.

Таким образом, выходной сигнал рассматриваемой простейшей оптической системы с точностью до постоянного множителя совпадает с фурье-образом входного сигнала. Следует отметить, что фурье-образ входного оптического сигнала существует в виде физически реального пространственного распределения комплексных амплитуд света. Благодаря этому когерентные оптические системы могут быть эффективно использованы для решения широкого круга задач, связанных с получением, преобразованием и обработкой фурье-спектров, корреляционных функций и сверток [1-3].

Поскольку фурье-образы двумерных оптических сигналов реализуются в виде реальных физических сигналов с помощью простейшей оптической системы, над ними можно производить различные математические операции методами пространственной фильтрации. Оптическая система обработки информации методами пространственной фильтрации (рис. 7) состоит из следующих компонентов:

- источника света S,

-двух последовательно расположенных простейших систем преобразования Фурье,

-устройства ввода информации,

-пространственного операционного фильтра

- детектора выходных сигналов.

Устройство ввода информации, операционный фильтр и детектор выходных сигналов располагаются соответственно во входной (x1,y1), спектральной Фурье-плоскости (xн,yн) и выходной (xD,yD) плоскостях системы.

Рис.7. Схема оптической системы обработки информации методами пространственной фильтрации.

S – источник оптического излучения.

-линза осуществляет преобразование Фурье

- линза осуществляет повторное преобразование Фурье

- транспарант

- операционный фильтр

-выходная плоскость системы

 

Линза Л2 осуществляет преобразование Фурье сигнала U1(x1,y1), созданного транспарантом, поэтому в спектральной плоскости системы непосредственно перед операционным фильтром распределение комплексных амплитуд света пропорционально фурье-образу входного сигнала. Амплитудно-фазовый коэффициент пропускания операционного фильтра определяется выражением:

tH = C×H(ξ,h), (2)

где C – комплексная константа, афункция H(ξ,h) соответствует математической операции, которую необходимо выполнить над входным сигналом, ее называют передаточной функцией фильтра. После пространственной фильтрации оптический двумерный сигнал подвергается повторному преобразованию Фурье с помощью линзы Л3. В результате в выходной плоскости системы оптическое поле будет иметь распределение:

, (3)

где C1 - комплексная константа. Направления координатных осей в выходной плоскости системы выбраны противоположно направлениям осей координат во входной плоскости для того, чтобы учесть инверсию, которая получается в результате двух последовательных преобразований Фурье и выражается соотношением F{F[U(x,y)]}=U(-x,-y).

Таким образом, оптическая система, представленная на рис. 3, способна выполнять линейные интегральные преобразования типа свертки, описываемые уравнением (3). В частном случае, когда H = 1, искомая система превращается в систему, создающую изображение входного сигнала. Так как входной сигнал оптической системы является финитным, ее фурье-образ имеет неограниченную протяженность. Поэтому ошибка в выходном сигнале оптической системы, обусловленная потерей части фурье-образа, соответствующей высоким пространственным частотам, неизбежна.

 







Дата добавления: 2015-09-15; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия