Студопедия — ЛАБОРАТОРНАЯ РАБОТА № 10.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА № 10.






Производные высших порядков, ряд Тейлора.

Если функция f:ХàR,xÎR,дифференцируема в "xÎX,то на множестве X возникает функция f ¢:XàR,значение которой в точке xÎX равно производной f ¢ (x).Если же функция f ¢:XàR имеет производную (f ¢)¢:XàR на множестве x,то (f ¢)¢(x) называется второй производной функции f(x) и обозначается f ²(x) или . Если f ²(x) имеет производную (f ²(x))¢,то эта производная называется третьей производной функции f(x) или производной третьего порядка функции f(x) и обозначаются одним из символов f ²¢(x),f(3)(x),

Производная n -го порядка является производной от производной

(n -1) порядка, т.е.

f(n)=(f(n-1))/ (x)

Производные, начиная со второй, называются производными высших порядков и обозначаются у/////(4),…у(n),

Производные n-го порядка некоторых элементарных функций:

1. ( x)(n)= xlnnx ()

2. (sinx)(n)=

3. (xm)(n)=m(m-1)…(m-n+1)xm-n

4. (ex)(n)=ex

5. (cosx)(n)=

6. (lnx)(n)=

Если функции u=j(x) и v=y(x) имеют производные n-го порядка (n- кратно дифференцируемы),

(1)

Пример 1: Вычислить n -ю производную (n ³2) функции y=x2cosx.

Решение: полагая u=cosx и v=x2, найдем

u(n)=cos(x+nп/2), v'=2x, v''=2,v''''=v(4)=…=0.

Подставляя в формулу (1), получаем

y(n)=c0ncos(x+nп/2)x2+c1ncos(x+(n-1)п/2)2x+c2ncos(x+(n-2)п/2)2

Формула (1) называется формулой Лейбница.

Опр. Функция у называется заданной параметрически, если зависимость между у и х задана системой уравнений

,tÎT

 
 

Производные этой функции могут быть найдены по формулам:

 

Пример 2. Найти производные от функции y=y(x), заданной параметрически если x=acost, y=asint

Решение:

Формула Тейлора. Пусть функция f(x) имеет в точке а и некоторой ее окрестности производные порядка n+1. Пусть х-любое значение аргумента из указанной окрестности, х= а. Тогда между точками а и х найдется точка x такая, что справедлива следующая формула:

Частный, простейший вид формулы Тейлора при а =0 принято называть формулой Маклорена:

Пример 3. Разложить в ряд Тейлора функции у=1/х при а =-2.

Решение: вычисляем значения данной функции и ее производных при х= а =-2

Подставляя эти значения в формулу Тейлора для произвольной функции, получим

ВАРИАНТЫ.

1. Найти

 

2. Доказать, что функция у удовлетворяет соотношению:

3. Используя формулу Лейбница, найти:

4. Используя формулу Тейлора, разложить функцию y= f (x) по степеням (х-х );

 







Дата добавления: 2015-09-18; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия