Студопедия — Задание на работу .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание на работу .






Решить задачу Коши на равномерной сетке. Решение найти в четырех узловых точках

(шаг h1 равен [ b - a ] / 4). Найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h2 = h1 / 2

Задачу решить с помощью системы MATHCAD:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Варианты лабораторных работ.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.


Вспомогательные материалы.

 

Пример

Решить задачу Коши

на равномерной сетке с шагом h = 0.1. Решение найти в четырех узловых точках.

С помощью программы найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h = 0.05

Задачу решить:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Решение. Здесь f (x,y) = x + y; m = 4; a = 0; b = 0.4;

h = (b - a) / m = 0.4 /4 = 0.1

а) Используя рекуррентные формулы

x0 = 0; y0 = 1; xi = x i - 1 + 0.1; y i = y i - 1 + 0.1(x i - 1 + y i - 1) i = (1, 2, 3, 4),

последовательно находим

при i = 1: x1 = 0.1; y1 = 1 + 0.1(0 + 1) = 1.1;

при i = 2; x2 = 0.2; y2 = 1.1 + 0.1(0.1 + 1.1) = 1.22;

при i = 3; x3 = 0.3; y3 = 1.22 + 0.1(0.2 + 1.22) = 1.362;

при i = 4; x4 = 0.4; y4 = 1.362 + 0.1(0.3 + 1.362) = 1.5282.

С помощью программы находим решение при h = 0.05.

Обозначив, d i = | y i (h) - y i (h/2) | сведем результаты вычислений в таблицу

 

I x i y i (h) y i (h / 2) d
  0.1 1.1 1.105 0.005
  0.2 1.22 1.231012 0.011012
  0.3 1.362 1.380119 0.018191
  0.4 1.5282 1.554911 0.028738

б) Формулы (7) в нашем случае принимают вид

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + h + yi-1 + k1[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/2)[ k1[i -1] + k2[i -1]] (i = 1, 2, 3, 4).

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1) = 0.12;

x1= 0 + 0.1 = 0.1; y1 = 1 + (1/2)(0.1 + 0.12) = 1.11;

 

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.11) = 0.121; k2[ 1 ] = 0.1(0.1+0.1+1.11+0.121) = 0.1431;

x1= 0.1 + 0.1 = 0.2; y1 = 1.11+(1/2)(0.121+0.143) = 1.2425.

 

Далее получаем при i = 3: x 3 = 0.3; y 3 = 1.398465;

При i = 4: x 4 = 0.4; y 4 = 1.581804.

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу, аналогичную таблице пункта а).

 

в) Из формул (8) получаем

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k1[ i - 1])

k3[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k2[ i - 1])

k4[ i - 1 ] = h (xi-1 + h + yi-1 + k3[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/6)[ k1[i -1] + 2k2[i -1] + 2k3[i -1] + k4[ i - 1 ]]

для i = 1, 2, 3, 4.

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.05 + 1 + 0.05) = 0.11;

k3[ 0 ] = 0.1(0 + 0.05 + 1 + 0.055) = 0.1105

k4[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1105) = 0.121050

x1= 0 + 0.1 = 0.1; y1 = 1 +(1/6)(0.1 + 2*0.11+2*0.1105+

+0.12105) = 1.110342;

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.110342) = 0.1210342;

k2[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.0605171) = 0.1326385;

k3[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.06604295) = 0.1326385;

k4[ 1 ] = 0.1(0.1 + 0.1 + 1.110342 + 0.1326385) = 0.1442980.

x2= 0.1 + 0.1 = 0.2;

y2 = y1 +(1/6) [ k1[1] + 2 k2[1] +2 k3[1] + k4[1]] = 1.242805;

 

Далее получаем при i = 3 x3 = 0.3; y3 = 1.399717;

i = 4 x4 = 0.4; y4 = 1.583648;

 

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу.

 

2. Блок - схема численного решения задачи Коши для дифференциального уравнения первого порядка методами Эйлера, Эйлера - Коши и Рунге - Кутта

 

Методом   Рунге -   Кутта
Методом   Эйлера -   Коши
Методом Эйлера
Вычисление приближенного решения на одном шаге

 

3. Пример программы для функции y / = x + y

(пример приведен для удобства разработки программы на MATHCADе студентами, привыкшими работать в ПАСКАЛЕ))

program DifEquationsFirstOrder;

{*******************************************************}

uses Crt;

const

c:array[1..4] of real = (0,0.5,0.5,1);

type

coef = array[0..4] of real;

var

i,j,m:integer;

a,b,h,x,y,y1,y2,y3:real;

k0,k:coef;

ch:char;

{-----------------------SUBROUTINES---------------------}

{ Y = F (x,y) (f = x+y) }

function f(x,y:real):real;

BEGIN

f:= x + y

END;

{-------------------------------------------------------}

procedure Pausa;

BEGIN

WRITELN;WRITELN ('Для продолжения нажмите любую клавишу...');

REPEAT ch:= readkey UNTIL ch <> '';

END;

{------------------ОСНОВНАЯ ПРОГРАММА-------------------}

BEGIN

ClrScr;

WRITELN ('Введите значения концов отрезка [a,b]');

READ (a,b);

WRITELN ('Введите начальное значение функции y0 при x=x0 ');

READ (y);

WRITELN (' Введите число значений функции на промежутке [a,b]');

READ (m);

x:= a; h:= (b-a) / m; y1:= y; y2:= y; y3:=y;

WRITELN (' Метод Эйлера Метод Э.-Коши Метод Р.-Кутта');

WRITELN ('x=',x:5:2,' y1=',y:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

FOR i:= 1 TO m DO

BEGIN

y1:= y1 + h*f(x,y1);

FOR j:=1 TO 2 DO

k0[j]:=h*f(x+2*c[j]*h, y2+2*c[j]*k0[j-1]);

y2:= y2+(k0[1]+k0[2]) / 2;

FOR j:=1 TO 4 DO

k[j]:= h*f(x+c[j]*h, y3+ c[j]*k[j-1]);

y3:= Y3+ (k[1]+2*k[2]+2*k[3]+k[4]) / 6;

x:= x+h;

WRITELN ('x=',x:5:2,' y1=',y1:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

END;

PAUSA;

END.

 

 







Дата добавления: 2015-09-18; просмотров: 350. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия