Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание на работу .





Решить задачу Коши на равномерной сетке. Решение найти в четырех узловых точках

(шаг h1 равен [ b - a ] / 4). Найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h2 = h1 / 2

Задачу решить с помощью системы MATHCAD:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Варианты лабораторных работ.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.


Вспомогательные материалы.

 

Пример

Решить задачу Коши

на равномерной сетке с шагом h = 0.1. Решение найти в четырех узловых точках.

С помощью программы найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h = 0.05

Задачу решить:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Решение. Здесь f (x,y) = x + y; m = 4; a = 0; b = 0.4;

h = (b - a) / m = 0.4 /4 = 0.1

а) Используя рекуррентные формулы

x0 = 0; y0 = 1; xi = x i - 1 + 0.1; y i = y i - 1 + 0.1(x i - 1 + y i - 1) i = (1, 2, 3, 4),

последовательно находим

при i = 1: x1 = 0.1; y1 = 1 + 0.1(0 + 1) = 1.1;

при i = 2; x2 = 0.2; y2 = 1.1 + 0.1(0.1 + 1.1) = 1.22;

при i = 3; x3 = 0.3; y3 = 1.22 + 0.1(0.2 + 1.22) = 1.362;

при i = 4; x4 = 0.4; y4 = 1.362 + 0.1(0.3 + 1.362) = 1.5282.

С помощью программы находим решение при h = 0.05.

Обозначив, d i = | y i (h) - y i (h/2) | сведем результаты вычислений в таблицу

 

I x i y i (h) y i (h / 2) d
  0.1 1.1 1.105 0.005
  0.2 1.22 1.231012 0.011012
  0.3 1.362 1.380119 0.018191
  0.4 1.5282 1.554911 0.028738

б) Формулы (7) в нашем случае принимают вид

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + h + yi-1 + k1[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/2)[ k1[i -1] + k2[i -1]] (i = 1, 2, 3, 4).

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1) = 0.12;

x1= 0 + 0.1 = 0.1; y1 = 1 + (1/2)(0.1 + 0.12) = 1.11;

 

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.11) = 0.121; k2[ 1 ] = 0.1(0.1+0.1+1.11+0.121) = 0.1431;

x1= 0.1 + 0.1 = 0.2; y1 = 1.11+(1/2)(0.121+0.143) = 1.2425.

 

Далее получаем при i = 3: x 3 = 0.3; y 3 = 1.398465;

При i = 4: x 4 = 0.4; y 4 = 1.581804.

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу, аналогичную таблице пункта а).

 

в) Из формул (8) получаем

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k1[ i - 1])

k3[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k2[ i - 1])

k4[ i - 1 ] = h (xi-1 + h + yi-1 + k3[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/6)[ k1[i -1] + 2k2[i -1] + 2k3[i -1] + k4[ i - 1 ]]

для i = 1, 2, 3, 4.

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.05 + 1 + 0.05) = 0.11;

k3[ 0 ] = 0.1(0 + 0.05 + 1 + 0.055) = 0.1105

k4[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1105) = 0.121050

x1= 0 + 0.1 = 0.1; y1 = 1 +(1/6)(0.1 + 2*0.11+2*0.1105+

+0.12105) = 1.110342;

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.110342) = 0.1210342;

k2[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.0605171) = 0.1326385;

k3[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.06604295) = 0.1326385;

k4[ 1 ] = 0.1(0.1 + 0.1 + 1.110342 + 0.1326385) = 0.1442980.

x2= 0.1 + 0.1 = 0.2;

y2 = y1 +(1/6) [ k1[1] + 2 k2[1] +2 k3[1] + k4[1]] = 1.242805;

 

Далее получаем при i = 3 x3 = 0.3; y3 = 1.399717;

i = 4 x4 = 0.4; y4 = 1.583648;

 

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу.

 

2. Блок - схема численного решения задачи Коши для дифференциального уравнения первого порядка методами Эйлера, Эйлера - Коши и Рунге - Кутта

 

Методом   Рунге -   Кутта
Методом   Эйлера -   Коши
Методом Эйлера
Вычисление приближенного решения на одном шаге

 

3. Пример программы для функции y / = x + y

(пример приведен для удобства разработки программы на MATHCADе студентами, привыкшими работать в ПАСКАЛЕ))

program DifEquationsFirstOrder;

{*******************************************************}

uses Crt;

const

c:array[1..4] of real = (0,0.5,0.5,1);

type

coef = array[0..4] of real;

var

i,j,m:integer;

a,b,h,x,y,y1,y2,y3:real;

k0,k:coef;

ch:char;

{-----------------------SUBROUTINES---------------------}

{ Y = F (x,y) (f = x+y) }

function f(x,y:real):real;

BEGIN

f:= x + y

END;

{-------------------------------------------------------}

procedure Pausa;

BEGIN

WRITELN;WRITELN ('Для продолжения нажмите любую клавишу...');

REPEAT ch:= readkey UNTIL ch <> '';

END;

{------------------ОСНОВНАЯ ПРОГРАММА-------------------}

BEGIN

ClrScr;

WRITELN ('Введите значения концов отрезка [a,b]');

READ (a,b);

WRITELN ('Введите начальное значение функции y0 при x=x0 ');

READ (y);

WRITELN (' Введите число значений функции на промежутке [a,b]');

READ (m);

x:= a; h:= (b-a) / m; y1:= y; y2:= y; y3:=y;

WRITELN (' Метод Эйлера Метод Э.-Коши Метод Р.-Кутта');

WRITELN ('x=',x:5:2,' y1=',y:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

FOR i:= 1 TO m DO

BEGIN

y1:= y1 + h*f(x,y1);

FOR j:=1 TO 2 DO

k0[j]:=h*f(x+2*c[j]*h, y2+2*c[j]*k0[j-1]);

y2:= y2+(k0[1]+k0[2]) / 2;

FOR j:=1 TO 4 DO

k[j]:= h*f(x+c[j]*h, y3+ c[j]*k[j-1]);

y3:= Y3+ (k[1]+2*k[2]+2*k[3]+k[4]) / 6;

x:= x+h;

WRITELN ('x=',x:5:2,' y1=',y1:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

END;

PAUSA;

END.

 

 







Дата добавления: 2015-09-18; просмотров: 375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия