Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание на работу .





Решить задачу Коши на равномерной сетке. Решение найти в четырех узловых точках

(шаг h1 равен [ b - a ] / 4). Найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h2 = h1 / 2

Задачу решить с помощью системы MATHCAD:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Варианты лабораторных работ.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.


Вспомогательные материалы.

 

Пример

Решить задачу Коши

на равномерной сетке с шагом h = 0.1. Решение найти в четырех узловых точках.

С помощью программы найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h = 0.05

Задачу решить:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Решение. Здесь f (x,y) = x + y; m = 4; a = 0; b = 0.4;

h = (b - a) / m = 0.4 /4 = 0.1

а) Используя рекуррентные формулы

x0 = 0; y0 = 1; xi = x i - 1 + 0.1; y i = y i - 1 + 0.1(x i - 1 + y i - 1) i = (1, 2, 3, 4),

последовательно находим

при i = 1: x1 = 0.1; y1 = 1 + 0.1(0 + 1) = 1.1;

при i = 2; x2 = 0.2; y2 = 1.1 + 0.1(0.1 + 1.1) = 1.22;

при i = 3; x3 = 0.3; y3 = 1.22 + 0.1(0.2 + 1.22) = 1.362;

при i = 4; x4 = 0.4; y4 = 1.362 + 0.1(0.3 + 1.362) = 1.5282.

С помощью программы находим решение при h = 0.05.

Обозначив, d i = | y i (h) - y i (h/2) | сведем результаты вычислений в таблицу

 

I x i y i (h) y i (h / 2) d
  0.1 1.1 1.105 0.005
  0.2 1.22 1.231012 0.011012
  0.3 1.362 1.380119 0.018191
  0.4 1.5282 1.554911 0.028738

б) Формулы (7) в нашем случае принимают вид

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + h + yi-1 + k1[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/2)[ k1[i -1] + k2[i -1]] (i = 1, 2, 3, 4).

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1) = 0.12;

x1= 0 + 0.1 = 0.1; y1 = 1 + (1/2)(0.1 + 0.12) = 1.11;

 

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.11) = 0.121; k2[ 1 ] = 0.1(0.1+0.1+1.11+0.121) = 0.1431;

x1= 0.1 + 0.1 = 0.2; y1 = 1.11+(1/2)(0.121+0.143) = 1.2425.

 

Далее получаем при i = 3: x 3 = 0.3; y 3 = 1.398465;

При i = 4: x 4 = 0.4; y 4 = 1.581804.

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу, аналогичную таблице пункта а).

 

в) Из формул (8) получаем

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k1[ i - 1])

k3[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k2[ i - 1])

k4[ i - 1 ] = h (xi-1 + h + yi-1 + k3[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/6)[ k1[i -1] + 2k2[i -1] + 2k3[i -1] + k4[ i - 1 ]]

для i = 1, 2, 3, 4.

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.05 + 1 + 0.05) = 0.11;

k3[ 0 ] = 0.1(0 + 0.05 + 1 + 0.055) = 0.1105

k4[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1105) = 0.121050

x1= 0 + 0.1 = 0.1; y1 = 1 +(1/6)(0.1 + 2*0.11+2*0.1105+

+0.12105) = 1.110342;

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.110342) = 0.1210342;

k2[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.0605171) = 0.1326385;

k3[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.06604295) = 0.1326385;

k4[ 1 ] = 0.1(0.1 + 0.1 + 1.110342 + 0.1326385) = 0.1442980.

x2= 0.1 + 0.1 = 0.2;

y2 = y1 +(1/6) [ k1[1] + 2 k2[1] +2 k3[1] + k4[1]] = 1.242805;

 

Далее получаем при i = 3 x3 = 0.3; y3 = 1.399717;

i = 4 x4 = 0.4; y4 = 1.583648;

 

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу.

 

2. Блок - схема численного решения задачи Коши для дифференциального уравнения первого порядка методами Эйлера, Эйлера - Коши и Рунге - Кутта

 

Методом   Рунге -   Кутта
Методом   Эйлера -   Коши
Методом Эйлера
Вычисление приближенного решения на одном шаге

 

3. Пример программы для функции y / = x + y

(пример приведен для удобства разработки программы на MATHCADе студентами, привыкшими работать в ПАСКАЛЕ))

program DifEquationsFirstOrder;

{*******************************************************}

uses Crt;

const

c:array[1..4] of real = (0,0.5,0.5,1);

type

coef = array[0..4] of real;

var

i,j,m:integer;

a,b,h,x,y,y1,y2,y3:real;

k0,k:coef;

ch:char;

{-----------------------SUBROUTINES---------------------}

{ Y = F (x,y) (f = x+y) }

function f(x,y:real):real;

BEGIN

f:= x + y

END;

{-------------------------------------------------------}

procedure Pausa;

BEGIN

WRITELN;WRITELN ('Для продолжения нажмите любую клавишу...');

REPEAT ch:= readkey UNTIL ch <> '';

END;

{------------------ОСНОВНАЯ ПРОГРАММА-------------------}

BEGIN

ClrScr;

WRITELN ('Введите значения концов отрезка [a,b]');

READ (a,b);

WRITELN ('Введите начальное значение функции y0 при x=x0 ');

READ (y);

WRITELN (' Введите число значений функции на промежутке [a,b]');

READ (m);

x:= a; h:= (b-a) / m; y1:= y; y2:= y; y3:=y;

WRITELN (' Метод Эйлера Метод Э.-Коши Метод Р.-Кутта');

WRITELN ('x=',x:5:2,' y1=',y:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

FOR i:= 1 TO m DO

BEGIN

y1:= y1 + h*f(x,y1);

FOR j:=1 TO 2 DO

k0[j]:=h*f(x+2*c[j]*h, y2+2*c[j]*k0[j-1]);

y2:= y2+(k0[1]+k0[2]) / 2;

FOR j:=1 TO 4 DO

k[j]:= h*f(x+c[j]*h, y3+ c[j]*k[j-1]);

y3:= Y3+ (k[1]+2*k[2]+2*k[3]+k[4]) / 6;

x:= x+h;

WRITELN ('x=',x:5:2,' y1=',y1:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

END;

PAUSA;

END.

 

 







Дата добавления: 2015-09-18; просмотров: 375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия