Студопедия — Гамма-излучение и его свойства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гамма-излучение и его свойства






 

Экспериментально установлено, что g-излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g-Спектр является линейчатым. g-Спектр — это распределение числа g-квантов по энергиям (такое же толкование b-спектра дано в §258). Дискретность g-спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

В настоящее время твердо установлено, что g-излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж денным, за время примерно 10-13 — 10-14 с, значительно меньшее времени жизни возбужденного атома (примерно 10-8 с), переходит в основное состояние с испусканием g-излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g-излучение одного и того же радиоактивного изотопа может содержать несколько групп g-квантов, отличающихся одна от другой своей энергией.

При g-излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g-Излучение большинства ядер является столь коротковолно вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g-излучение рассматривают как поток частиц — g-квантов. При радиоактивных распадах различных ядер g-кванты имеют энергии от 10 кэВ до 5МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании g-кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g-кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с g-излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Евыделяется в виде у-кванта, то частота излучения v определяется из извест ного соотношения E=hv. Бели же испускаютЛ электроны внутренней конверсии, то их энергии равны Е—АК, E—AL, ..., где Ак, AL,...— работа выхода электрона из К - и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b-электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.

g-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g-излучения сквозь вещество они либо поглощаются, либо рассеива ются им. g-Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка у-квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I = I0 е-mx (I0 и I — интенсивности g-излучения на входе и выходе слоя поглощающего вещества толщиной х, m— коэффициент поглощения). Так как g-излучение — самое проникающее излучение, то mдля многих веществ — очень малая величина; mзависит от свойств вещества и от энергии g-квантов.

g-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение g-излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение g-нзлучення, — это процесс, при котором атом поглощает g-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий g-квантов (Eg < 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g-квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии g-квантов (Еg» 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g-квантов с веществом является комптоновское рассеяние (см. § 206).

При Еg >1,02 МэВ = 2mес2 (mе— масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z2 и увеличивается с ростом Еg.Поэтому при Еg» 10 МэВ основным процессом взаимодействия g-излучения в любом веществе является образование электроиво-позитронных пар.

Если энергия g-кванта превышает энергию связи нуклонов в ядре (7—8 МэВ), то в результате поглощения g-кванта может наблюдаться ядерный фотоэффект — выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность g-излучения используется в гамма-дефектоскопии — методе дефектоскопии, основанном на различном поглощении g-излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие g-излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:

Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.

Единица, поглощенной дозы излучения — грей (Гр)*: 1 Гр= 1 Дж/кг — доза из лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

Экспозиционная доза излучения — физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

Единила экспозиционной дозы излучения — кулон на килограмм (Кл/кг); внеси стемной единицей является рентген (Р): 1 Р=2,58× 10-4 Кл/кг.

Биологическая доза — величина, определяющая воздействие излучения на организм.

Единица биологической дозы — биологический эквивалент рентгена (бэр): 1 бэр — доза любого вида ионизирующего излучения, производящая такое же биоло гическое действие, как и доза рентгеновского или g-излучения в 1 Р (1 бэр= 10-2 Дж/кг).

Мощность дозы излучения — величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица — грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица — ампер на килограмм (А/кг)).

 







Дата добавления: 2015-09-18; просмотров: 337. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия