Студопедия — Тангенциальная составляющая ускорения 3 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тангенциальная составляющая ускорения 3 страница






Пусть полная энергия тела равна Е (ее график — прямая, параллельная оси h). На высоте h тело обладает потенциальной энергией П, которая определяется отрезком вертикали, заключенным между точкой h на оси абсцисс и графиком П(h). Естествен­но, что кинетическая энергия Т задается ординатой между графиком П(h) и горизон­тальной прямой ЕЕ. Из рис. 15 следует, что если h=hmax, то Т =0 и П =E=mghmax, т. е.потенциальная энергия становится максимальной и равной полной энергии.

Из приведенного графика можно найти скорость тела на высоте h:

откуда

Зависимость потенциальной энергии упругой деформации П =кх 2 / 2от деформации х имеет вид параболы (рис. 16), где график заданной полной энергии тела Е — прямая, параллельная оси абсцисс х, а значения Т и П определяются так же, как на рис. 15. Из рис. 16 следует, что с возрастанием деформации х потенциальная энергия тела воз­растает, а кинетическая — уменьшается. Абсцисса x max определяет максимально воз­можную деформацию растяжения тела, a – х max — максимально возможную дефор­мацию сжатия тела. Если х = ± х max, то T= 0 и П =E=k / 2, т. е. потенциальная энергия становится максимальной и равной полной энергии.

 

Из анализа графика на рис. 16 вытекает, что при полной энергии тела, равной Е, тело не может сместиться правее х max и левее – х max, так как кинетическая энергия не может быть отрицательной и, следовательно, потенциальная энергия не может быть больше полной энергии. В таком случае говорят, что тело находится в потенциальной яме с координатами – х max £ x £ х max.

В общем случае потенциальная кривая может иметь довольно сложный вид, например с несколькими чередующимися максимумами и минимумами (рис. 17). Проанализируем эту потенциальную кривую. Если Е — заданная полная энергия частицы, то частица может находиться только там, где П(х) £ Е, т. е. в областях I и III. Переходить из области I в III и обратно частица не может, так как ей препятствует потенциальный барьер CDG, ширина которого равна интервалу значе­ний х, при которых E < П, а его высота определяется разностью ПmахE. Для того чтобы частица смогла преодолеть потенциальный барьер, ей необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее. В области I частица с полной энергией Е оказывается «запертой» в потенциальной яме AВС и совершает колебания между точками с координатами хA и хC.

В точке В с координатой х 0 (рис. 17) потенциальная энергия частицы минимальна. Так как действующая на частицу сила (см. § 12) (П — функция только одной координаты), а условие минимума потенциальной энергии , то в точке В —Fx = 0. При смещении частицы из положения х 0 (и влево и вправо) она испытывает действие возвращающей силы, поэтому положение х 0 является положением устойчивого равновесия. Указанные условия выполняются и для точки (для Пmax). Однако эта точка соответствует положению неустойчивого равновесия, так как при смещении частицы из положения появляется сила, стремящаяся удалить ее от этого положения.

§ 15. Удар абсолютно упругих и неупругих тел

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Помимо ударов в прямом смысле этого слова (столкновения атомов или биллиардных шаров) сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. Силы взаимодействия между сталкивающимися телами (ударные или мгновенные силы) столь велики, что внешними силами, действующими на них, можно пренебречь. Это позволяет систему тел в процес­се их соударения приближенно рассматривать как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения пока­зывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и да удара называется коэффициентом восстановления e:

Если для сталкивающихся тел e=0, то такие тела называются абсолютно неупругими, если e=1 — абсолютно упругими. На практике для всех тел 0 < e < 1 (например, для стальных шаров e»0,56, для шаров из слоновой кости e»0,89, для свинца e»0). Однако в некоторых случаях тел а можно с большой степенью точности рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.

Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энер­гия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию (подчеркнем, что это идеализированный случай).

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами т 1 и m 2 до удара через v1 и v2, после удара—через и (рис. 18). В случае прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицатель-нос — движению влево.

При указанных допущениях законы сохранения имеют вид

(15.1)

(15.2)

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

(15.3)

(15.4)

откуда

(15.5)

Решая уравнения (15.3) и (15.5), находим

(15.6)

(15.7)

Разберем несколько примеров.

1. При v 2=0

(15.8)

(15.9)

Проанализируем выражения (15.8) в (15.9) для двух шаров различных масс:

а) т 1 2. Если второй шар до удара висел неподвижно (v 2=0) (рис. 19), то после удара остановится первый шар ( = 0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара ();

б) т 1> т 2. Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью ( <v 1). Скорость второго шара после удара больше, чем скорость первого после удара ( > ) (рис. 20);

в) т 1< т 2. Направление движения первого шара при ударе изменяется—шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т. е. <v 1 (рис. 21);

г) т 2>> т 1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что = –v 1, »2 m 1 v 1 / m2»0.

2. При т 1= т 2 выражения (15.6) и (15.7) будут иметь вид

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстре­чу друг другу (рис. 22).

Если массы шаров т 1 и т 2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать

где v — скорость движения шаров после удара. Тогда

(15.10)

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае, если массы шаров равны (т 1= т 2), то

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:

Используя (15.10), получаем

Если ударяемое тело было первоначально неподвижно (v 2 = 0), то

Когда m 2>> m 1 (масса неподвижного тела очень большая), то v << v 1 и почти вся кинети­ческая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m 1>> m 2 ), тогда v»v 1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар — пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

Задачи

3.1. Определить: 1) работу поднятия груза по наклонной плоскости; 2) среднюю и 3) максималь­ную мощности подъемного устройства, еслимасса груза 10 кг, длина наклонной плоскости 2 м, угол ее наклона к горизонту 45°, коэффициент трения 0,1 и время подъема 2 с. [1) 173 Дж; 2) 86 Вт; 3) 173 Вт]

3.2. С башни высотой 35 м горизонтально брошен камень массой 0,3 кг. Пренебрегая со­противлением воздуха, определить: 1) скорость, с которой брошен камень, если через 1 с после начала движения его кинетическая энергия 60 Дж: 2) потенциальную энергию камня через 1 с после начала движения. [1) 17,4 м/с; 2) 88,6 Дж]

3.3. Пренебрегая трением, определить наименьшую высоту, с которой должна скатываться тележ­ка с человеком по желобу, переходящему в петлю радиусом 10 м, чтобы она сделала полную петлю и не выпала из желоба. [25 м]

3.4. Пуля массой m =10 г, летевшая горизонтально со скоростью v =500 м/с, попадает в балли­стический маятник длиной l =1 м и массой M= 5 кг и застревает в нем. Определить угол отклонения маятника. [18°30']

3.5. Зависимость потенциальной энергии частицы в центральном силовом поле от расстояния r до центра поля задается выражением П (r) = , где А и В — положительные постоянные. Определить значение r 0, соответствующее равновесному положению частицы. Является ли это положение положением устойчивого равновесия? [ r 0 = 2 A/B ]

3.6. При центральном абсолютно упругом ударе движущееся тело массой т 1 ударяется о по­коящееся тело массой m 2, в результате чего скорость первого тела уменьшается в n =1,5 ра­за. Определить: 1) отношение m 1 /m 2; 2) кинетическую энергию Т 2 второго тела, если первоначальная кинетическая энергия первого тела T 1=1000 Дж. [1) 5; 2) 555 Дж]

3.7. Тело массой т 1 = 4 кг движется со скоростью v 1=3 м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, определить количество теплоты, выделившееся при ударе. [9 Дж]

Глава 4 Механика твердого тела

§ 16. Момент инерции

При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины d r с внутренним радиусом r и внешним r +d r. Момент инерции каждого полого цилиндра d J=r 2d m (так как d r<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2p rh d r. Если r— плотность материала, то dm= 2p rhr d r и d J=2phrrз d r. Тогда момент инерции сплошного цилиндра

но так как pR 2 h — объем цилиндра, то его масса m=pR 2 hr, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Таблица 1

§ 17. Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами т 1, т 2 ,..., тn , находящиеся на расстоянии r 1, r 2,..., rn от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементар­ные объемы массами mi опишут окружности различных радиусов ri, и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

или

Используя выражение (17.1), получаем

где Jz момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно (T=mv 2/2 ), следует, что момент инерции — мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m — масса катящегося тела; vc скорость центра масс тела; Jc — момент инер­ции тела относительно оси, проходящей через его центр масс; w — угловая скорость тела.

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точ­ки О в точку А приложения силы, на силу F (рис. 25):

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

(18.1)

где a— угол между r и F; r sina = l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложе­на в точке В, находящейся от оси z на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь d s=r dj и работа равна произведе­нию проекции силы на направление смещения на величину смещения:

(18.2)

Учитывая (18.1), можем записать

где Fr sin a = Fl =Mz момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличение его кинетической энергии: dA=dT, но поэтому Mz dj = Jzw d w, или

Учитывая, что получаем

(18.3)

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство

(18.4)

где J — главный момент инерции тела (момент инерции относительно главной оси).

§ 19. Момент импульса и закон то сохранения

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы «играет» момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произ­ведением:

где r — радиус-вектор, проведенный из точки О в точку A, p =m v импульс мате­риальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где a угол между векторами r и р, l — плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдель­ная точка тела движется по окружности постоянного радиуса ri с некоторой скоро­стью v i. Скорость v i и импульс mi v i перпендикулярны этому радиусу, т. с. радиус является плечом вектора mi v i. Поэтому можем записать, что момент импульса отдель­ной частицы равен

(19.1)

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

(19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость. Продифференцируем уравнение (19.2) по времени:

т. е.

Это выражение — еще одна форма уравнения динамики вращательного движения твер­дого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

(19.3)

В замкнутой системе момент внешних сил откуда

(19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.







Дата добавления: 2015-09-18; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия