Студопедия — Закон сохранения момента импульса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон сохранения момента импульса






 

Моментом импульса материальной точки (частицы) относительно точки О называется векторная величина

 

(12)

 

где r - радиус-вектор, определяющий положение частицы относительно точки О, а p=mV - импульс частицы. Модуль этой величины, равный rpsina, можно представить в виде произведения плеча импульса на модуль вектора p:

 

L= p.

 

Плечом импульса называется длина перпендикуляра, опущенного из точки О на прямую, вдоль которой направлен импульс частицы.

Частица обладает моментом импульса, независимо от формы траектории, по которой она движется. Рассмотрим два частных случая.

1. Частица движется вдоль прямолинейной траектории (рис.2). Модуль момента импульса L=mV может изменяться только за счет изменения модуля скорости.


 

 


Рис.2 Рис.3

 

2. Частица движется по окружности радиуса r (рис.3). Модуль момента импульса относительно центра окружности равен

 

L=mVr

 

и так же, как в предыдущем случае, может изменяться только за счет изменения модуля скорости. Несмотря на непрерывное изменение направления вектора p, направление вектора L остается постоянным.

Проекция вектора L на произвольную ось z, проходящую через точку О, называется моментом импульса частицы относительно этой оси: . Псевдовектор M= [rF]. Называется моментом силы F относительно точки О, из которой проводится радиус-вектор r точки приложения силы. Модуль момента силы можно представить в виде

 

M=rFsina= F,

 

где =sina - плечо силы относительно точки О (т.е. длина перпендикуляра, опущенного из точки О на прямую, вдоль которой действует сила).

Проекция вектора M на некоторую ось z, проходящую через точку О, относительно которой определен M, называется моментом силы относительно этой оси: . Силы взаимодействия между частицами действуют в противоположные стороны вдоль одной и той же прямой. Их моменты относительно произвольной точки О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил для любой системы частиц, в частности для твердого тела, всегда равна нулю:

 

(13)

 

Выясним, от чего зависит изменение момента импульса частицы. С этой целью продифференцируем выражение (12) по времени:

 

.

 

Согласно второму закону Ньютона - результирующей сил, действующих на частицу; по определению . Поэтому можно написать, что

 

 

Второе слагаемое является векторным произведением коллинеарных векторов и поэтому равно нулю. Первое слагаемое представляет собой момент силы F относительно той же точки, относительно которой взят момент импульса L.

Следовательно, мы приходим к соотношению

 

, (14)

 

согласно которому скорость изменения момента импульса со временем равна суммарному моменту сил, действующих на частицу.

Спроектировав векторы, фигурирующие в уравнении (14), на произвольную ось z, проходящую через точку О, получим соотношение

 

.

 

Таким образом, производная по времени от момента импульса относительно оси равна моменту относительно той же оси сил, действующих на частицу.

Рассмотрим систему частиц, на которые действуют как внутренние, так и внешние силы. Моментом импульса L системы относительно точки О называется сумма моментов импульса Li отдельных частиц:

 

 

Дифференцирование по времени дает, что

 

(15)

 

В соответствии с (14) для каждой из частиц можно написать равенство

 

,

 

где - момент внутренних сил, а - момент внешних сил, действующих на i-ю частицу. Подстановка этих равенств в (15) приводит к соотношению:

 

.

 

Каждое из слагаемых в этих суммах представляет собой сумму моментов сил, действующих на i-ю частицу. Суммирование осуществляется по частицам. Если перейти к суммированию по отдельным силам, независимо от того, к какой из частиц они приложены, индекс i в суммах можно опустить.

Согласно (13) суммарный момент внутренних сил равен нулю. Поэтому получаем окончательно, что

 

(16)

 

Формула (16) сходна с формулой (1).

Из сравнения этих формул заключаем, что подобно тому, как производная по времени от импульса системы равна сумме моментов внешних сил.

Спроектировав векторы, фигурирующие в формуле (16) на произвольную ось z, проходящую через точку О, придем к уравнению

 

(17)

 

Если система замкнута (т.е. внешних сил нет), правая часть равенства (16) равна нулю и, следовательно, вектор L не изменяется со временем. Отсюда вытекает закон сохранения момента импульса, который гласит, что момент импульсазамкнутой системы материальных точек остается постоянным. Разумеется, будет оставаться постоянным и момент импульса замкнутой системы относительно любой оси, проходящей через точку О.

Момент импульса сохраняется и для незамкнутой системы, если сумма моментов внешних сил равна нулю. Согласно (17) сохраняется момент импульса системы относительно оси z при условии, что сумма моментов внешних сил относительно этой оси равна нулю.

В основе закона сохранения момента импульса лежит изотропия пространства, т.е. одинаковость свойств пространства по всем направлениям. Поворот замкнутой системы частиц без изменения их взаимного расположения (конфигурации) и относительных скоростей не изменяет механических свойств системы. Движение частиц друг относительно друга после поворота будет таким же, каким оно было бы, если бы поворот не был осуществлен.

Размещено на Allbest.ru







Дата добавления: 2015-09-18; просмотров: 576. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия