Студопедия — Двухколенный кривошип
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двухколенный кривошип






В общем случае к входному механизму (ВМ) может присоединяться несколько структурных групп. После определения реакций в их кинематических парах становятся известными усилия R1, R2,... Rn, действующие на ВМ со стороны рычажного механизма. В общем случае эти усилия могут быть приложены в произвольных точках ВМ. Ниже силовой расчет иллюстрируется конкретными примерами, но результаты будут получены в общем виде.

Наиболее часто встречающийся в курсовых проектах по ТММ случай, когда к кривошипу присоединяется несколько структурных групп – это коленчатый вал, приводящий в движение несколько шатунно-ползунных групп. На рис. 5.15 представлен пример такого механизма с двумя группами. Задача в данном случае состоит в определении реакций в опорах кривошипа.


Тип силового расчета кривошипа зависит от того, как на него передается крутящий момент с вала двигателя. На рис. 5.16 представлены наиболее распространенные варианты.

5.5.2.1. Крутящий момент на кривошип передаётся через зубчатую или фрикционную пару


Вариант, показанный на рис. 5.16а. В этом случае крутящий момент, действующий на кривошипе создается усилием в зацеплении и при силовом расчете учитывается так называемой уравновешивающей силой “Fу”, приложение которой уравновешивает кривошип, что и позволяет использовать уравнения равновесия. Плоская расчетная схема для этого варианта представлена на рис. 5.17а. Целью расчета является определение реакции в опоре кривошипа, обозначим её .

Уравновешивающая сила определяется из условия равновесия моментов всех сил, действующих на кривошип:

(5.30)

 

где: h i – плечи, на которых соответствующие силы создают крутящие моменты, на рис. 5.17а показаны плечи h2 и hу, n – количество структурных групп, присоединенных к кривошипу.

Если момент передается через зубчатую пару, то aw (см. рис. 5.17а) это угол зацепления, а если через фрикционную – то aw = 0.

Если силовой расчет производится после динамического исследования характера движения кривошипа (см. гл. 7), то при вычислении уравновешивающей силы появляется возможность учесть и инерционную нагрузку:

(5.31)

 

где: MИ = J пр e1 – инерционный момент, действующий на кривошип в данном положении, J пр – значение приведенного момента инерции машины, e1 – угловое ускорение кривошипа.

Реакцию R01 в опоре кривошипа найдем из условия равновесия в виде равенства нулю суммы всех сил, действующих на кривошип:

(5.32)

где: G 1 – вес кривошипа.

Уравнение (5.32) можно решить графически, построив план сил (рис. 5.17б), или аналитически, составив систему уравнений равновесия спроецировав векторное уравнение (5.32) на оси НСК X0Y0, тогда:

 

 

(5.33)

 

 

Характерными особенностями данного варианта являются:

1. Уравновешивающая сила создает дополнительную составляющую реакции в опоре кривошипа.

2. Величина этой дополнительной составляющей зависит от характера внешних сил, диаметра колеса 1 на валу кривошипа и расположения шестерни 2 относительно колеса 1.

5.5.2.2. Крутящий момент на кривошип передается через планетарный или волновой механизм

Схема в аксонометрии показана на рис. 5.16. Соответствующая плоская расчетная схема представлена на рис. 5.18а.


В этом случае крутящий момент, действующий на кривошип создается несколькими усилиями тоже называемыми уравновешивающими силами, но возникающими в осях сателлитов Fу i (i =1, 2,... nw); где: nw – количество сателлитов. Обычно в силовых механизмах nw = 3 … 5. Однако, для силового расчета это не имеет значения, поскольку, как следует из плана сил на рис. 5.18б, усилия Fу j образуют замкнутый контур и в сумме не создают дополнительной реакции в опоре кривошипа т.к.


Поэтому в данном случае достаточно определитьуравновешивающий момент “Mу” из условия равновесия моментов всех сил, действующих на кривошип:

(5.34)

 

 

где: h i – плечи, на которых силы R i создают крутящие моменты,

nСГ – количество структурных групп, присоединенных к кривошипу.

Слагаемое “MИ” поставлено в скобках т.к. оно учитывается или нет в зависимости от стадии, на которой производится силовой расчет (см. комментарии к уравнениям 5.30).

Реакцию R01 в опоре кривошипа найдем из условия равновесия в виде равенства нулю суммы всех сил, действующих на кривошип:

(5.35)

где: G 1 – вес кривошипа.

Уравнение (5.35) можно решить графически, построив план сил (рис. 5.18б), или аналитически, составив систему уравнений равновесия спроецировав векторное уравнение (5.35) на оси НСК X0Y0, тогда:

 

 

(5.36)

 

 

Характерной особенностью данного варианта является то, что в опоре кривошипа не возникает дополнительных составляющих реакции, что можно отнести к достоинствам планетарных и волновых механизмов.

 


 







Дата добавления: 2015-09-19; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия