Студопедия — Лекционный материал. Геном человека: идентификация генов наследственных болезней
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекционный материал. Геном человека: идентификация генов наследственных болезней






Геном человека: идентификация генов наследственных болезней

В первую очередь патологическая анатомия генома позволила идентифицировать и охарактеризовать гены моногенных наследственных заболеваний. Результатом этих работ стало не только получение громадной по объему информации о вызывающих менделирующие заболевания мутациях, но и разработка новых эффективных технологий типирования ДНК, создание и хранение информационных баз данных, способов обработки больших массивов результатов. Дальнейшее развитие работ по изучению патологической анатомии генома связано с поиском и анализом генетических факторов, играющих роль в определении сложных и количественных признаков - в том числе с поиском генов предрасположенности к мультифакториальным (многофакторным) заболеваниям. (Мультифакториальные болезни (multifactionaldisease): болезни, в которых взаимодействует окружающая среда и генетические компоненты. Заболевание, для которого отсутствует простая модель наследования или единичный, вызывающий болезнь ген. Примеры: диабет типа II, астма илисердечно-сосудистое заболевание)

К числу таких заболеваний относятся все наиболее частые заболевания - такие как болезни сердечно-сосудистой системы, астма, сахарный диабет, многие неврологические и нейропсихиатрические заболевания. Таким образом, именно анализ частых заболеваний позволит революционизировать медицину в целом, переведя ее на молекулярный уровень. При этом предлагаемые в рамках молекулярной медицины методы лечения и профилактики частых заболеваний будут максимально учитывать особенности генетической организации каждого конретного человека. Очевидно, что для решения поставленной задачи необходимо будет объединить получаемые при анализе структурных особенностей генома данные с данными функциональной геномики (анализ влияния тех или изменений структуры генома на экспрессию генов и структуру их белковых продуктов), сравнительной геномики (сопоставление структуры гомологичных генов у различных видов животных), этнической геномики (анализ отличий в структуре ДНК у представителей разных этнических групп), фармакогеномики (изучение роли особенностей организации генома в метаболизме различных ксенобиотиков, в том числе лекарственных препаратов). Разработка столь многочисленных проблем привела к существенному расширению областей интереса молекулярно-генетической науки, а также к распространению ее подходов и методов, как на смежные, так и достаточно отдаленные научные направления. К числу таких направлений в первую очередь относится медицинская генетика и взаимопроникновение этих двух областей науки привело к созданию нового направления исследований - медицинской геномики, Медицинская геномика занимается определением генных дефектов при наследственных и других болезнях, изучением экспрессии мутантных генов и разработкой новых методов диагностики, лечения и профилактики. В рамках работ по медицинской геномике удалось разработать методы пресимптоматической, пренатальной и преимплантационной диагностики ряда наследственных заболеваний, начать работы по разработке методов генной терапии наследственных и приобретенных заболеваний, заложить основы профилактической геномно- ориентированной медицины. Особый интерес представляет изучение молекулярно-генетических основ наследственных и мультифакториальных неврологических и нейропсихиатрических заболеваний. Это связано с тем, что изучение этой группы болезней позволяет выявить и охарактеризовать новые экспрессирующиеся в нервной системе гены, что существенно расширит генетическую базу, закладывающую основы изучения молекулярных принципов функционирования нервной системы. Так, именно при изучении неврологических заболеваний был обнаружен новый, неизвестный ранее тип мутаций - динамические мутации. (В 1991 году был открыт новый тип мутаций в геноме человека - так называемые динамические мутации, вызванные увеличением числа копий (экспансией) простых повторяющихся последовательностей. Практически одновременно была описана экспансия триплетных повторов в кодирующей области гена рецептора андрогенов (при болезни Кеннеди или спинобульбарная мышечная атрофия) и в области ломкого сайта Х хромосомы в некодирующей области ранее не описанного гена FMR1 (при синдроме ломкости Х хромосомы или синдроме Мартина-Белла))

В рамках медицинской геномики неврологических болезней в настоящее время исследования ведутся по двум основным направлениям - анализу моногенных неврологических заболеваний (картирование и клонирование их генов, анализ спектра мутаций, молекулярных механизмов формирования фенотипа) и разработке подходов к анализу так называемых сложных заболеваний, имеющих мультифакториальную природу - то есть зависящих как от генетических факторов, так и от факторов внешней среды (таких как болезнь Паркинсона (Болезнью Паркинсона называют идиопатический прогрессирующий паркинсонизм, при котором отсутствуют другие неврологические нарушения. Болезнь Паркинсона обычно начинается в среднем или пожилом возрасте и постепенно приводит к инвалидности. Заболевание встречается во всех этнических группах, одинаково часто у мужчин и женщин.), болезнь Альцгеймера (прогрессирующей потерея памяти, нарушения речи, движения, узнавания, непредсказуемым поведение, галлюцинации), боковой амиотрофический склероз). Их изучение является новым этапом в молекулярной генетике человека, который позволит разработать методы диагностики, лечения и профилактики, учитывающие генетические факторы риска, для группы наиболее распространенных болезней - таких инсульт,сахарный диабет, ишемическая болезнь сердца.

Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей.

ДНК-ма́ркеры (ДНК-маркёры) или молекулярно-генетические маркеры, полиморфный признак, выявляемый методамимолекулярной биологии на уровне нуклеотидной последовательности ДНК, для определенного гена или для любого другого участка хромосомы при сравнении различных генотипов, особей, пород, сортов, линий.

За последние годы накопился большой массив данных об эффективности использования молекулярно-генетических маркеров, как на уровне белков, так и ДНК, РНК, для решения многих задач генетики, селекции, сохранения биоразнообразия, изучения механизмов эволюции, картирования хромосом, а также для семеноводства и племенного дела.

Наиболее широко используемые молекулярно-генетические маркеры условно можно подразделить на следующие типы — маркеры участков структурных генов, кодирующих аминокислотные последовательности белков (электрофоретические варианты белков), маркеры некодирующих участков структурных генов и маркеры различных последовательностей ДНК, отношение которых к структурным генам, как правило, неизвестно — распределение коротких повторов по геному (RAPD — случайноамплифицируемая полиморфная ДНК; ISSR — инвертированные повторы; AFLP — полиморфизм в сайтах рестрикции) имикросателлитные локусы (тандемные повторы с длиной элементарной единицы в 2-6 нуклеотидов).

Имеется целый набор современных технологий выявления полиморфизма на уровне ДНК, среди которых можно выделить следующие:

анализ полиморфизма длин рестриктных фрагментов ДНК (RFLP);

анализ полиморфизма с помощью полимеразной цепной реакции (ПЦР) и другие методы на основе амплификации ДНК междуповторяющимися последовательностями в геномной ДНК.

Генный банк - тип биорепозитория в котором сохраняется генетический материал. В генном банке растений могут храниться замороженные срезы растений или заготовленные семена. Для животных возможно замораживание спермы и яйцеклеток в зоологических морозильниках. У кораллов берут фрагменты, которые затем хранятся в емкостях для воды в контролируемых условиях.

У растений возможно разморозить материал и распространить его, однако, у животных необходима живая самка для осуществления искусственного оплодотворения. Хотя часто бывает трудно использовать замороженные сперматозоиды животных и яйцеклетки, есть много примеров того, как это было успешно сделано.

В целях сохранения биологического разнообразия сельского хозяйства, банки генов используются для хранения и сохранения генетических ресурсов растений основных сельскохозяйственных культур и их диких родичей. Существует много генных банков по всему миру, но, пожалуй, самым известным является Всемирное семенохранилище на Шпицбергене, созданное по инициативе ООН в 2006 году. Одним из первых важных генных банков была коллекция семян растений ВИР (250 тысяч образцов по состоянию на 1940 год), собранная советским учёным-ботаником Н. И. Вавиловым и его сотрудниками в результате 110 ботанико-

Типы генных банков

Банк семян сохраняет сухие семена при очень низкой температуре. Споры и птеридофиты сохраняются в семенных банках, но другие бессеменные растения, такие как клубнеплоды, не могут быть сохранены подобным образом. Крупнейший банк семян в мире это Международный исследовательский институт риса в Маниле.

В 2007 году начал свою работу Израильский банк семян, целью которого является сбор и консервация семян и генетического материала растений Палестины.

Банк тканей

В этой технике почки и клетки меристемы сохраняются при определенном световом и температурном режиме в питательной среде. Этот метод используется для сохранения бессемянных растений и растений, которые размножаются бесполым способом.

Криобанк

Используя эту технику, семя или зародыш сохраняется при очень низких температурах. Как правило, его хранят в жидком азоте при температуре -196 ° C. Это полезно для сохранения видов, которые находятся на грани исчезновения..

Полевой генофонд

Это метод посадки растений для сохранения генов, экосистемы для которого строят искусственным путём. С помощью этого метода можно сравнить различия между растениями разных видов и изучить его в деталях. Для этого метода необходимо большее количество земли, почвы, погоды и т.д. Зародышевая плазма важных сельскохозяйственных культур сохраняется именно с помощью этого метода. Более 42 000 сортов риса сохраняются используя этот метод в Центральном научно-исследовательский институте риса в индийском штате Орисса.

Клонотеки генов: общие сведения

Любой индивидуальный ген занимает лишь небольшую часть генома живого организма. В то же время размер генома даже наиболее просто организованных бактерий в среднем составляет 2106 п.о., а суммарный размер молекул ДНК, составляющих гаплоидный геном человека, по крайней мере, на три порядка больше. Из этого следует, что уникальные гены, представленные в гаплоидном геноме только одной копией, затеряны среди других последовательностей генома, и для работы с индивидуальными рекомбинантными ДНК требуется очистка от ненужного генетического материала.

Такая задача в генной инженерии решается через создание репрезентативных (представительных) клонотек последовательностей нуклеотидов ДНК или, иначе говоря, клонотек генов.

Клонотека генов представляет собой набор разных последовательностей нуклеотидов ДНК, клонированных в составе векторных молекул, которые в сумме составляют весь геном исследуемого организма или какую-либо известную его часть. При этом репрезентативная клонотека должна заключать в себе с высокой долей вероятности любую последовательность нуклеотидов изучаемого генома. Для большинства генов эукариот характерна интрон-экзонная структура, а интроны, присутствующие в первичных транскриптах таких генов, вырезаются в процессе сплайсинга с образованием зрелых молекул мРНК. Для получения экспрессии эукариотических генов в клетках прокариот, а также изучения тканеспецифической экспрессии генов возникает необходимость в получении кодирующих последовательностей эукариотических генов без интронов. В этом случае задача решается через создание репрезентативных клонотек кДНК, в которых с высокой вероятностью представлены последовательности нуклеотидов мРНК, синтезирующихся в тканях, культурах тканей или отдельных соматических клетках.

Клонотеки генов: получение

Общие принципы получения клонотек генов приложимы и к другим векторам, плазмидным или фаговым.

На первом этапе осуществляют подготовку вектора и клонируемой ДНК. Космидный вектор расщепляютрестриктазами BamHI и SmaI, причем рестриктаза SmaI расщепляет ДНК с образованием "тупых" концов. В результате образуются два "плеча" космидного вектора, содержащих область начала репликации ori, используемую системой репликации бактериальных клеток, и два селектируемых маркера, которые представляют собой гены устойчивости к антибиотикам - ампициллину (Ampr) и канамицину (Kanr), а также два cos-сайта хромосомы бактериофага лямбда. Параллельно получают препараты высокомолекулярной ДНК, которую необходимо клонировать.

Геномную ДНК подвергают частичному гидролизу мелкощепящей рестриктазой MboI (узнает последовательность из четырех нуклеотидов GATC, которые комплементарны "липким" концам, образуемым рестриктазой BamHI). Время рестрикции и концентрацию фермента подбирают таким образом, чтобы средняя длина образующихся фрагментов ДНК составляла 35-45 т.п.о. Обогащенную фракцию фрагментов ДНК далее получают центрифугированием смеси рестрикционных фрагментов в градиенте концентрации сахарозы и лигируют с приготовленными "плечами" вектора в условиях, при которых образование сшивок по "тупым" концам минимально. При этом, помимо требуемых молекул рекомбинантных ДНК, могут образовываться и артефактные молекулы, которые не будут упаковываться в фаговые частицы либо из-за их неоптимального размера, либо вследствие неправильной ориентации cos-сайтов.

Полученную после лигирования смесь молекул рекомбинантных ДНК упаковывают в фаговые частицы стандартным способом, и образовавшимися фаговыми частицами заражают подходящие бактериальные клетки. В итоге колонии бактериальных клеток, которые выросли в присутствии антибиотиков, должны заключать в себе различные последовательности нуклеотидов клонируемой ДНК приблизительно одинаковой длины.

Для получения репрезентативных клонотек генов следует помнить о необходимости случайной фрагментации клонируемой высокомолекулярной ДНК, с тем чтобы все участки генома в образующейся смеси фрагментов были представлены равновероятно. Кроме того, размеры образуемых фрагментов ДНК должны соответствовать емкости вектора, используемого для их клонирования. Так, для клонирования в космидах необходимо получать фрагменты ДНК длиной 35-45 т.п.о., тогда как для клонирования в фаговых векторах типа Charon и плазмидах эти размеры должны составлять соответственно 20-24 и 1,5-3,0 т.п.о. Чем короче фрагменты, используемые для получения библиотек генов, и чем сложнее исследуемый геном, тем большее число клонов необходимо получить, чтобы клонотека была полной. Например, для того, чтобы создать геномную клонотеку бактерий из фрагментов ДНК длиной в 20 т.п.о., в которой любая последовательность была бы представлена с вероятностью 99%, в ней необходимо иметь 460 клонов, для млекопитающих это число возрастает до 600000, а для покрытосеменных растений примерно в 10 раз больше. Отсюда следует, что для получения репрезентативных клонотек генов бактерий достаточно плазмидных векторов, несмотря на их небольшую емкость, а для создания полных клонотек генов млекопитающих или растений использование плазмидных векторов бесперспективно, так как потребовало бы поддержания в клонотеке огромного количества клонов, многие из которых с большой вероятностью могут быть утрачены.

Вопросы:

1. Геном человека: идентификация генов наследственных болезней

2. ДНК-ма́ркеры

3. Генный банк

4. Типы генных банков

- Банк тканей

- Полевой генофонд

5. Клонотеки генов: общие сведения

 

ТОО «Есикский медицинский колледж» г.Есик

 







Дата добавления: 2015-08-12; просмотров: 1045. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2024 год . (0.046 сек.) русская версия | украинская версия