Студопедия — Базис и размерность ЛП решений ОСЛАУ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Базис и размерность ЛП решений ОСЛАУ






В этом пункте укажем базисы и размерности наиболее часто встречающихся линейных пространств, введенных в пункте 2. Для каждого конечномерного линейного пространства обычно определяют так называемый элементарный (стандартный) базис (наиболее простой и удобный при решении задач). Также дадим критерии проверки того, при каком условии заданная система векторов является базисом линейного пространства.

1) Линейное пространство . Элементарным базисом в является упорядоченная система -мерных вектор-столбцов

, ,

где все компоненты вектор-столбца () равны нулю, кроме одной, которая равна единице и располагается в позиции, указываемой номером в его обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система -мерных вектор-столбцов

, (1.11)

где (), является базисом пространства тогда и только тогда, когда квадратная -матрица

,

столбцами которой являются векторы (), является неособенной матрицей.

При этом если задан вектор-столбец , то для нахождения координатного вектор-столбца в базисе (1.11) достаточно решить систему линейных алгебраических уравнений

,

которая в силу неособенности матрицы , имеет единственное решение.

2) Линейное пространство . Элементарным базисом в является упорядоченная система матриц

,

где все элементы матрицы () равны нулю, кроме одного, который равен единице и располагается в позиции, указываемой двумя номерами в обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система матриц

, (1.12)

где (), является базисом в тогда и только тогда, когда матрица

,

столбцами которой являются вектор-столбцы

(),

является неособенной квадратной матрицей.

При этом если задана матрица (), то для нахождения координатного вектор-столбца этой матрицы в базисе (1.12) достаточно решить систему линейных алгебраических уравнений

,

где , которая в силу неособенности матрицы , имеет единственное решение.

3) Линейное пространство

.

Известно (см. п. 2), что если , то система уравнений

имеет ровно линейно независимых решений, образующих фундаментальную систему решений (ФСР):

, (1.13)

где .

При этом любое решение можно выразить в виде

,

где коэффициенты определяются однозначно. При этом координатный вектор-столбец вектора имеет вид . Таким образом, система (1.13) является базисом в пространстве и .

Пример 1.2. Найти базис и размерность пространства решений системы

Решение. Приводим матрицу системы к ступенчатому виду

.

Ранг матрицы . Принимая переменные за базисные, а за свободные (обозначаем при этом ), получим общее решение рассматриваемой ОСЛАУ

Составляем базис пространства решений (фундаментальную систему решений, при этом ):

.

 








Дата добавления: 2015-08-12; просмотров: 737. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия