Студопедия — Косвенные методы фазировки 4 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Косвенные методы фазировки 4 страница






Сигнальные устройства и отыскание замыканий на землю. Выше было указано, что сети с компенсацией емкостных токов могут эксплуатироваться при наличии замыкания на землю. Но так как длительное повышение напряжения на двух фазах и прохождение небольших токов проводимости на землю увеличивают вероятность аварии, а в случае обрыва и падения провода на землю создается опасность для жизни людей и животных, то отыскание и устранение повреждения должны производиться как можно быстрее. О происшедшем в сети замыкании на землю персонал узнает по работе сигнальных устройств, а фаза, получившая соединение с землей, устанавливается по показаниям вольтметров контроля изоляции.

В сигнальном устройстве реле контроля изоляции подключаются к выводам дополнительной вторичной обмотки трансформатора напряжения НТМИ, соединенной по схеме разомкнутого треугольника. При нарушении изоляции фазы на землю на зажимах этой обмотки появляется напряжение нулевой последовательности 3 U0, реле KV срабатывает и подает сигнал (см. рис. 10.1).

В сетях с компенсацией емкостных токов схемы сигнализации и контроля работы дугогасящих реакторов подключаются либо к трансформатору тока реактора, либо к его сигнальной обмотке.

К сигнальной обмотке реактора подключаются также лампы контроля отсутствия замыкания в сети, устанавливаемые непосредственно у привода разъединителя. Лампы вклю­чаются без предохранителей, и поэтому изоляция их цепей должна обладать достаточной надежностью. Схемы сиг­на­ли­за­ции, как правило, имеют цепи электромагнитной блокировки, запрещающей отключение разъединителей реактора при замыкании на землю.

По полученным сигналам на подстанциях нельзя сразу определить электрическую цепь, на которой произошло замыкание на землю, так как все отходящие линии имеют между собой электрическую связь на шинах. Для определения электрической цепи, имеющей замыкание на землю, пользуются избирательной сигнализацией поврежденных участков, основанной на использовании токов переходного процесса замыкания или токов высших гармоник, источником которых являются нелинейные цепи.

В настоящее время наибольшее распространение на подстанциях, питающих кабельную сеть, получили устройства с разделительным фильтром типов РФ и УСЗ (в стационарном исполнении - УСЗ 2/2; в переносном, применяемом совместно с токоизмерительными клещами, - УСЗ-3). Указанные устройства реагируют на высшие гармоники, содержащиеся в токе 3 I0. Их уровень пропорционален емкостному току сети и в поврежденной линии всегда значительно выше, чем в токах нулевой последовательности неповрежденных. Именно это и служит признаком повреждения на той или другой линии.

Устройство типа РФ работает в диапазоне частот 50 и 150Гц. В компенсированных сетях, как правило, используется диапазон 150Гц. Для контроля уровня высших гармоник на под­станциях для каждой линии составляют таблицы показаний прибора на частоте 150 Гц, снятые в нормальном нагрузочном режиме при отсутствии однофазного замыкания на землю. Эти показания должны систематически про­веряться. С ними сравниваются показания прибора при отыскании поврежденного присоединения. В случае большой недокомпенсации или при отсутствии компенсации в сети прибор переключается на диапазон 50 Гц.

Стационарные устройства устанавливаются на щитах управления или в коридорах распределительных устройств и при помощи кнопок, переключателей или шаговых искателей при появлении в сети замыкания на землю поочередно подключаются персоналом к трансформаторам тока нулевой последовательности (ТТНП), установленным на каждой кабельной линии (рис. 10.3).

Поврежденным считается присоединение, на котором при измерении стрелка прибора отклонится на большее число де­лений, чем при измерениях на всех других присоединениях.

В Мосэнерго разработано и внедрено в эксплуатацию устройство типа КСЗТ-1 (модернизированный вариант КДЗС) автоматического поиска кабельной линии с устойчивым замыканием фазы на землю. Оно путем поочередного измерения на ТТНП определяет кабельную линию с поврежденной изоляцией по максимальному уровню в ней тока высших гармоник. Информация по каналу ТС в виде условного кода передается на диспетчерский пункт, где дешифратором преобразуется в число, составляющее наименование линии.

При отсутствии ТТНП на кабельных линиях для отыскания поврежденного присоединения пользуются токоизмерительными клещами в качестве измерительного трансформатора тока. При замерах устройство УСЗ устанавливается на клещи вместо токосъемного амперметра.

Если устройства избирательной сигнализации на подстанции отсутствуют или не дают желаемых результатов, отыскание поврежденного присоединения производится путем перевода отдельных присоединений с одной системы (сек­ции) шин на другую, работающую без замыкания на землю, или путем деления электрической сети в заранее предусмотренных местах. Эти операции должны производиться таким образом, чтобы при делении сети отдельные ее части были полностью компенсированы. Для отыскания повреждения иногда пользуются поочередным кратковременным отключением линий с включением их в работу от АПВ или вручную.

Одновременно с отысканием места повреждения в сети должны производиться осмотры работающих реакторов и трансформаторов, к нейтралям которых они подключены. Это вызвано тем, что продолжительность непрерывной работы реакторов под током нормируется заводами для отдельных ответвлений от 2 до 8 ч. Если отыскание замыкания на землю затягивается, персонал обязан вести тщательное наблюдение за температурой верхних слоев масла в баке реактора, записывая показания термометра через каждые 30 мин. Максимальное повышение температуры верхних слоев масла при этом допускается до 100°С. Если реакторы установлены на подстанциях, обслуживаемых оперативными выездными бригадами (ОВБ), то после отыскания и отключения повредившейся линии производится осмотр реакторов с записью показаний их термометров и возвращением в исходное положение всех указанных реле и сигнальных устройств.

10.2

Предупреждение отказов в работе выключателей и предотвращение угрозы их повреждения

Выше было сказано, что причинами отказов в работе масляных выключателей часто являются неисправности передаточных механизмов, дефекты приводов и цепей управления, а в работе воздушных выключателей - неисправности клапанных систем, электромагнитов управления и их цепей. Эти повреждения не могут быть выявлены внешним осмотром выключателей без проверки их действия. К сожалению, в последние годы в ряде энергосистем проверке действия приводов не уделяется должного внимания. В результате выключатели долгое время остаются в работе с невыявленными дефектами и в нужный момент отказывают в работе.

В целях профилактики, очевидно, необходимо регулярное опробование работы всех выключателей в межремонтный период путем их однократного дистанционного отключения и включения, а выключателей, находящихся в резерве, - путем дистанционного включения и отключения. Если при дистанционном опробовании будет обнаружен отказ в отключении выключателя, персонал обязан вывести неисправный выключатель в ремонт. Отключение масляного выключателя в этом случае производится вручную воздействием на защелку привода. Если из-за механической неисправности отключение масляного выключателя в распределительном устройстве окажется неуспешным, следует создать схему для разрыва тока в цепи с дефектным выключателем с помощью ШСВ или обходного выключателя.

Аналогичные действия (т.е. создание специальных схем для вывода из работы поврежденного выключателя) должны предприниматься персоналом и при неполнофазном отключении выключателя, а также в том случае, когда отключение выключателя вообще невозможно, например, при пониженном уровне масла в баке масляного выключателя, при повреждении камер воздушного выключателя и т.д. В схемах с двумя системами шин для отключения электрической цепи с помощью ШСВ необходимо снять предохранители в цепи управления выключателя, отключение которого невозможно произвести или нельзя допустить из-за дефекта, включить ШСВ, если он был отключен, перевести все присоединения на одну рабочую систему шин, оставив на другой электрическую цепь с дефектным выключателем, подать на привод ШСВ напряжение оперативного тока и отключить его, отключая тем самым выводимую из работы цепь. После вывода из работы дефектного выключателя отключением его разъединителей в распределительном устройстве восстанавливается нормальная схема.

В схемах с одной или двумя рабочими и обходной системами шин для отключения электрической цепи обходным выключателем необходимо снять предохранители в цепи управления выключателя, отключение которого невозможно произвести или нельзя допустить из-за дефекта, проверить отключенное положение обходного выключателя и включить его разъединители на обходную систему шин, проверить, включены ли шинные разъединители обходного выключателя на ту систему шин, на которую работает электрическая цепь, имеющая дефектный выключатель. В противном случае следует произвести переключение разъединителей обходного выключателя, отключив сначала включенные шинные разъединители, а затем включить его разъединители на другую систему шин, опробовать напряжением обходную систему шин с уставками опробования на защите, отключить обходной выключатель и проверить в распределительном устройстве его отключенное положение, включить разъединители цепи, имеющей дефектный выключатель, на обходную систему шин, включить обходной выключатель и снять с его привода напряжение оперативною тока, проверить включенное положение обходного выключателя и отключить линейные и шинные разъединители цепи с дефектным выключателем.

Затем цепь, выключатель которой выведен из схемы, может быть отключена обходным выключателем или оставлена в работе через обходной выключатель. В последнем случае необходимо после подачи напряжения оперативного тока на привод обходного выключателя включить на нем защиты с уставками, соответствующими уставкам защит данной цепи. Произвести изменения в схеме дифференциальной защиты шин, поскольку обходной выключатель остается в работе вместо выведенного в ремонт выключателя цепи.

В отдельных случаях, например при повреждении фарфоровых деталей или контактной системы воздушного выключателя, когда подача сжатого воздуха в камеру становится невозможной из-за опасности ее разрушения, появляется необходимость вывода из работы воздушного выключателя отключением его линейными и шинными разъединителями, если нет для этого иной возможности. В схемах с двумя системами шин при наличии двух выключателей на цепь вывод из работы поврежденного выключателя может быть произведен при соблюдении следующих условий: приводы разъединителей цепи с поврежденным выключателем должны иметь дистанционное управление, системы шин должны быть соединены развилкой парных выключателей любой другой цепи (лучше двух-трех цепей) помимо развилки цепи, имеющей поврежденный выключатель.

Для вывода выключателя необходимо отключить автоматические выключатели (снять предохранители) в цепи управления поврежденного выключателя, проверить, имеется ли нагрузка на всех фазах неповрежденного выключателя данной электрической цепи, со щита управления дистанционно отключить сначала линейные, а потом шинные разъединители в цепи поврежденного выключателя, снять предохранители в оперативных и силовых цепях приводов отключенных линейных и шинных разъединителей, закрыть вентили в агрегатном шкафу на подаче сжатого воздуха к выключателю и выпустить в атмосферу имеющийся воздух в баках поврежденного выключателя.

Для вывода из работы дефектного выключателя на подстанциях, выполненных по схемам кольцевого типа, необходимо, чтобы кольцо было замкнуто всеми выключателями. Операции отключения разъединителей производятся дистанционно.

Во всех перечисленных выше случаях вывод из схемы выключателей, находящихся во включенном положении, производится отключением разъединителей. Для беспрепятственного проведения таких операций необходимо предварительно выводить из действия оперативную блокировку между выключателем и разъединителями.

10.3

Сокращение числа операций с шинными разъединителями

Опыт эксплуатации показывает, что операции с разъеди­ни­­телями при выполнении переключений являются наиболее от­ветственными. Поломки изоляторов шинных разъединителей приводят к коротким замыканиям с обесточением сборных шин и связаны с опасностью для персонала. Часты полом­ки опорно-стержневых изоляторов серий ОНС. Усиление контроля за состоянием изоляторов, своевременное выявление и незамедлительное принятие мер к замене дефектной изо­ляции наряду с технически обоснованным сокращением чис­ла операций с разъединителями позволяют резко повысить безаварийность работы. Прежде всего, не следует производить операции с разъединителями, имеющими дефекты. При необходимости, в зависимости от характера выявленного дефекта, операции должны выполняться по особому в каждом отдельном случае разрешению главного инженера предприятия электрических сетей (ПЭС).

Для сокращения числа переключений на подстанциях следует заранее планировать выполнение наибольшего объема ремонтных и профилактических работ, которые могут быть выполнены за одно отключение, чтобы избежать повтор­ных отключений оборудования. Необходимо совмещать все виды ремонтных работ на подстанции, линиях электропередачи, в цепях вторичной коммутации. Заявки на вывод в ремонт оборудования и проверку защит должны тщательно прорабатываться, с тем, чтобы уменьшить число операций с шинными разъединителями.

Перед выводом в ремонт сборных шин должны быть выявлены измерениями дефектные изоляторы шинных разъединителей для замены их в предстоящее отключение.

Большое число операций с шинными разъединителями производится при включении под напряжение (или для фазировки) нового и вышедшего из капитального ремонта оборудования. При этом, как правило, освобождается одна система сборных шин путем традиционного перевода электрических цепей при помощи шинных разъединителей. Вместе с тем для такого рода работ бывает достаточным отключение системы шин выключателями работающих на нее электрических цепей и снятие с приводов выключателей оперативного тока, если это допустимо по режиму работы подстанции и электрической сети. Не обязательно при этом отключение и шинных разъединителей ШСВ, если в этом нет необходимости по условию безопасности работ. Например, при фазировке отключенное положение ШСВ достаточно фиксировать снятием напряжения оперативного тока с привода.

Переводы электрических цепей с одной системы шин на дру­гую целесообразно производить с предварительным отклю­­чением выключателей, если это допустимо по режиму работы. После отключения выключателя отключают шинные разъединители электрической цепи с одной системы шин и вклю­чают на другую. В этом случае при поломке шинного разъединителя и возникновении короткого замыкания лишит­ся напряжения лишь одна система шин, другая сохранится в работе.

 

10.4

Недопустимость схем последовательного соединения делительных конденсаторов воздушных выключателей с трансформаторами напряжения серии НКФ

Феррорезонансный контур. В цепях, содержащих после­довательно включенные емкость и индуктивность со сталью, могут возникнуть феррорезонансные процессы. Рассмот­рим явление феррорезонанса в простейшей схеме на рис. 10.4, а. Зависимость напряжений на элементах схемы от тока пред­ставлена вольтамперными характеристиками на рис. 10.4, б. Вольтамперная характеристика нелинейной индуктив­ности UL = f (I) изображена кривой А, линейной емкости UC =(1/ wc) I - прямой Б и активного сопротивления (UR = RI)–пря­­мой В. Результирующая вольтамперная характеристика схе­мы изображена кривой Г. Ордината каждой ее точки полу­че­­на геометрическим суммированием ординат кривых А, Б и В. При относительно малом активном сопротивлении в цепи результирующая кривая Г имеет падающий участок 2-3. С уве­личением R этот участок исчезает.

Если в представленном контуре плавно увеличивать напряжение источника ЭДС, начиная с нуля, то каждому значению напряжения Un на результирующей кривой будет соответствовать своя точка (назовем ее точкой п), которая будет пере­мещаться от точки О к точке 2, соответствующей напряжению U2 и току I 2. Если и дальше повышать напряжение, точ­ка п, минуя участок кривой 2-3-4, так как он соответствует меньшему значению напряжения, чем U2, сразу переместится в точку 4, что приведет к скачкообразному повышению тока в це­пи до значения I4, при этом резко изменится угол сдвига фаз между током и общим напряжением: в точке 2 CL2 > UC2 и ток отстает от напряжения, в точке 4 UC4 > UL 4 и ток опережает напряжение[27]. Кроме того, в момент скачка тока сильно возрастает напряжение на емкости и индуктивности.

Если теперь плавно снижать напряжение источника ЭДС, то при достижении им значения U1 ток в цепи сначала плавно от I4 до I3, а затем скачком уменьшится от I3 до I1.

Таким образом, в последовательной феррорезонансной цепи может возникнуть явление резкого изменения тока при небольшом изменении напряжения на входе цени, а также при изменении значения емкости или параметров катушки со стальным сердечником.

Образование феррорезонансных схем при переключениях. На подстанциях напряжением 220кВ и выше при опе­ратив­ных переключениях могут образовываться различные последовательные или последовательно-параллельные схе­­мы соединения индуктивности трансформатора напряжения серии НКФ и активного сопротивления его обмоток с емкостью шин и конденсаторов, шунтирующих контактные разры­вы воздушных выключателей серий ВВН, ВВБ, ВНВ, ВВД, ВВ и др. В зависимости от соотношений между реактивными элементами в контуре могут возникнуть опасные феррорезонансные явления, при этом на шинах могут появиться повышенные напряжения, а по обмотке ВН трансформатора напря­жения серии НКФ будут проходить недопустимые по значе­нию токи, что на практике может привести к повреждению изоляции обмотокёи даже пожару трансформаторов напряжения.

Приведем примеры. На подстанции выводилась в ремонт I система сборных шин 220кВ. Когда от этой системы шин с трансформатором напряжения серии НКФ были отключены воздушные выключатели всех электрических цепей и шины остались соединенными с источником питания пятью параллельными емкостными цепочками шунтирующих конденсаторов типа ДМР-55-0,0033, в схеме возник феррорезонанс, при котором напряжение на I системе шин повысилось до 300кВ, а по обмоткам ВН трансформатора напряжения се­рии НКФ в течение нескольких десятков минут проходил опасный ток. Был замечен белый дым, выходивший из трансформатора напряжения. После отключения и вскрытия транс­фор­матора напряжения было обнаружено тепловое разрушение обмоток ВН.


Рис. 10.4. Последовательная феррорезонансная цепь:

а - принципиальная схема;

б - вольтамперные характеристики элементов


Феррорезонансные процессы имели место и при автоматических отключениях, например, при действии УРОВ. На одной подстанции при КЗ на линии и неполнофазном отключении ее воздушного выключателя УРОВ была обесточена система шин 220 кВ с трансформатором напряжения серии НКФ. Через емкостные делители контактных разрывов четырех выключателей (трех типа ВВБ-220 и одного типа ВВН-220) образовалась последовательная цепь из емкостей и индуктивности трансформатора напряжения, в которой возник феррорезонансный процесс, сопровождающийся значительным повышением напряжения на шинах, что было замечено по щитовым приборам. От прохождения опасного тока по обмоткам ВН трансформатора напряжения серии НКФ одна фаза его взорвалась.


Рис. 10.5. Образование феррорезонансного контура при отключении автотрансформатора:

а - положения коммутационных аппаратов; б - электрические элементы контура; в – схема замещения


На подстанциях, имеющих схемы, выполненные много­угольником, также неоднократно наблюдались ферро­резо­нансные явления. Схема подстанции 500 кВ пред­став­ля­ла собой шестиугольник с одной электрической цепью в каждом его узле (рис. 10.5, а). В узле А присоединения авто­транс­фор­ма­тора Т1 был жестко подключен транс­форматор на­пряже­ния типа НКФ-500. Автотрансформатор Т1 был выведен в ре­монт отключением выключателей Q1, Q2 и разъединителей QS3. Трансформатор напряжения в узле А остался под­клю­чен­ным через емкости, шунтирующие разомк­нутые контакты от­делителей воздушных вы­ключа­телей Q1 и Q2 (рис. 10.5, б). По про­шествии некоторого времени было замечено сильное коронирование на трансформаторе напряжения и появление ды­ма из его нижних каскадов. Трансформатор напряжения типа НКФ-500 был выведен в ремонт. При вскрытии нижнего его каскада было обнаружено разрушение витковой и слое­вой изоляции, а также спекание проводов обмотки ВН. Тепловой характер разрушения изоляции свидетельствовал о дли­тельном прохождении тока до 0,3 А, плотность которого в тонкой первичной обмотке трансформатора напряжения пре­высила плотность тока плавления провода.

Последовательность операций, исключающая феррорезонансные процессы. Для предотвращения феррорезонансных явлений в схемах подстанций напряжением 220 кВ и выше оперативные переключения следует производить в такой последовательности, при которой не создавались бы схемы последовательного соединения делительных конденсаторов воздушных выключателей с трансформаторами напряжения серии НКФ. На подстанциях, где трансформаторы напряжения имеют разъединители, при выводе в ремонт системы шин (узла электрической цепи) с трансформатором напряжения серии НКФ его разъединители следует отключать перед отключением выключателя последнего присоединения, питающего шины или узел. При вводе в работу системы шин или узла электрической цепи разъединители трансформатора напряжения следует включать лишь после включения под рабочее напряжение этой системы шин или узла схемы.

На случай отключения выключателей от системы шин с трансформатором напряжения серии НКФ действием УРОВ необходимо предусматривать АПВ одной любой отключен­ной со всех сторон электрической цепи для того, чтобы рас­строить возможный феррорезонансный контур.

Широко практикуется запрет на отключение вы­ключа­теля одного из силовых трансформаторов при срабатывании дифференциальной защиты шин. Ее действием при КЗ на ши­нах высшего напряжения отключаются выключатели транс­форма­тора лишь со стороны среднего и низшего напряжений.

Если трансформатор напряжения серии НКФ не имеет разъединителей, то ввод в работу системы шин, а также вывод из работы системы шин или узла электрической цепи с присоединенным трансформатором напряжения серии НКФ должны производиться шинными или узловыми разъединителями при включенном воздушном выключателе одной из электрических цепей, который соответственно первым включается или последним отключается. При этом необходимо каждый раз деблокировать блокировку между выключателем и разъединителями. Это действие специально оговаривается в местной инструкции по производству переключений. Порядок деблокирования и ввода блокировки в работу указывается в бланке переключений. Последовательность операций при включении всех последующих, а также при отключении предпоследних электрических цепей производится обычным порядком.

Сказанное поясним на примере схемы рис. 10.5 с тем условием, что после вывода автотрансформатора из работы по соображениям надежности замкнем схему шестиугольника. Последовательность операций при выводе из работы автотрансформатора должна быть следующей: после отключения выключателей Т1 со стороны низших напряжений первыми отключают воздушные выключатели Q1, Q2 и разъединители QS1, QS2 и последним QS3. Для замыкания шестиугольника без автотрансформатора сначала включают воздушный выключатель Q1, а затем разъединители QS1 и QS2. Включением воздушного выключателя Q2 замыкают схему шестиугольника.

Последовательность операций при вводе в работу автотрансформатора после ремонта должна быть следующей: отключают воздушный выключатель Q2 (размыкается шестиугольник), отключают разъединители QS2, QS1 и воздушный выключатель Q1, включают разъединители QS3, а затем QS1 и QS2, включают воздушные выключатели Q1 и Q2 (замыкается шестиугольник), далее включают Т1 под нагрузку со стороны низших напряжений.

Смысл указанной последовательности операций очевиден: при отключенных выключателях Q1 и Q2 к узлу А помимо трансформатора напряжения должен быть приключен автотрансформатор, индуктивность которого расстраивает резонансный контур.

В настоящее время ведутся разработки устройств борьбы с феррорезонансом. Так, например, СКТБ ВКТ Мосэнерго разработано и передано в опытную эксплуатацию устройство подавления феррорезонанса типа УПФ-220. Оно подключается к вторичным обмоткам (соединенным по схеме разомкнутого треугольника) трансформатора напряжения серии НКФ и путем кратковременного шунтирования вторичных обмоток с помощью тиристоров в момент появления феррорезонанса изменяет электрические и магнитные параметры трансформатора напряжения, что и приводит к подавлению феррорезонансных явлений. Блоки управления тиристорами вводятся в работу вручную перед началом оперативных переключений в РУ, а также автоматически от выходных реле ДЗШ и УРОВ при их срабатывании.

10.5

Предупреждение аварий по вине оперативного персонала

При переключениях на подстанциях иногда допускаются ошибки по вине оперативного персонала. Ошибки эти нередко приводят к крупным авариям. Те, кто совершает аварии, потом с трудом припоминают мотивы, побудившие их к ошибочным действиям. Однако анализы многих аварий показали, что ошибки возникают вследствие нарушений оперативной дисциплины, а также являются результатом сложной нервной деятельности оперативного персонала, его поведения при работе в особых условиях. Особенность условий работы оперативного персонала заключается в том, что переключения выполняются в электрических распределительных устройствах, где много внешне одинаковых ячеек, оборудование которых может в одно и то же время находиться в работе, в ремонте, в резерве и оставаться при этом полностью или частично под высоким напряжением. При некотором стечении обстоятельств вероятность принять один элемент оборудования за другой очень велика. Поэтому окружающая обстановка и сам характер оперативной работы требуют от персонала осмотрительности, хорошей памяти и безукоризненного соблюдения оперативной дисциплины.

Оперативная дисциплина - это строгое и точное соблюдение персоналом определенного порядка при переключениях и правил поведения на рабочем месте, установленных правилами технической эксплуатации и техники безопасности, должностными положениями и инструкциями. Оперативная дисциплина - одно из непременных условий нормальной работы электроустановок и энергосистем. Благодаря ей, действия персонала при переключениях принимают упорядоченный характер, что обеспечивает нормальное функционирование электроустановок.

Оперативная дисциплина основывается на понимании каждым оперативным работником своего долга и личной ответственности. Когда эти чувства перестают быть внутренними пружинами действий человека, возникают разного рода отклонения в поведении, которые приводят к нарушениям существующих порядков и правил.

К основным нервным (психофизиологическим) факторам, способствующим безошибочной работе оперативного персонала, следует отнести внимание и самонаблюдение.

Внимание - сложное психическое явление, выражающееся в избирательности восприятия, направленности сознания на определенный объект. Оно возникает и развивается в связи с какой-либо деятельностью, проводимой на объекте, и является необходимым условием ее сознательного осуществления. Сосредоточение внимания проявляется в большей или меньшей углубленности в работу. Чем больше концентрируется сознание на главном, чем меньше отвлечение второстепенными деталями, тем меньше допускается ошибок.

Самонаблюдение (или самоконтроль) - это наблюдение, объектом которого являются психическое состояние и действия самого же наблюдающего лица. Оно контролируется сознанием и является одним из условий безошибочной работы. Надо наблюдать за своим поведением, запоминать и оценивать свои действия. Иначе нельзя сдержать себя от ошибки, если не видеть, как выходишь за рамки дозволенных действий.

В практической работе оба эти фактора (внимание и самонаблюдение) часто проявляются совместно. Невнимательность и отсутствие самоконтроля приводят к ошибкам. В качестве примера приведем описание одной из них. На ответвительной двухтрансформаторной подстанции нужно было отключить отделители 110 кВ трансформатора Т1, предварительно отключенного выключателями со стороны обмоток низшего напряжения. Эта операция была выполнена дистанционно поворотом ключа на щите управления. Дня проверки отключенного положения отделителей дежурный пришел на открытую часть. Не обратив внимания на надпись, он ошибочно вошел в ячейку другого трансформатора - Т2. Увидев, что отделители его включены, и не разобравшись, что находится он в ячейке трансформатора Т2, дежурный возвратился на щит управления и ключом попытался повторно подать импульс на отключение отделителей трансформатора Т1. При повторной проверке отключенного положения отделителей трансформатора Т1 на открытой части дежурный опять вошел в ячейку трансформатора Т2. Обнаружив, что отделители трансформатора включены, он нарушил блокировку и с места отключил отделители трансформатора Т2 под нагрузкой!







Дата добавления: 2015-08-12; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия