Студопедия — Нестационарное одномерное температурное поле в полуограниченной среде с заданной постоянной температурой на поверхности.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нестационарное одномерное температурное поле в полуограниченной среде с заданной постоянной температурой на поверхности.






1.Изменение температуры в неограниченной среде. Пусть в неограни­чен­ной среде задано начальное распределение температуры T = f(x). Для того, чтобы определить, как это распределение будет изменяться со временем, можно каж­дую точ­ку среды считать источником с количеством тепла, равным:

q = rcTdx' = rcf(x')dx'.

Тогда температуру в любой точке среды в любой момент времени можно за­пи­сать в виде ин­те­гра­ла от фундаментального решения по x', полагая в этой формуле t' = 0:

. (1)

Формула (1) дает решение поставленной задачи, если задан конкретный вид функции f(x).

Рассмотрим пример, имеющий важное практическое значение. Пусть два одинаковых тела прямоугольной формы на­греты до раз­лич­ных тем­пе­ратур. Примем за нуль начальную тем­пе­ратуру более холодного тела, а начальную тем­пе­ра­ту­ру более на­гре­того тела обо­зна­чим через T1. Пусть в момент времени t' = 0 эти те­ла при­ве­де­ны в со­прикосновение (см. рисунок), так что получается одно не­рав­но­мер­но нагретое тело, и пусть размер этого тела до­ста­точно велик, так что мож­но применить формулу (1). То­гда на­чаль­ное распределение температуры (функция f(x')) бу­дет иметь вид "ступеньки": нуль при x' < 0 и T1 при x' > 0 (ли­ния 1 на ри­сун­ке), и фор­му­ла (1) при­ни­ма­ет вид:

. (2)

Вычислить этот интеграл удобно по отдельности для об­лас­тей x > 0 и x < 0. В области x > 0 сде­лаем замену: (x-x')2/(4at) = a2. Тогда , пределы интегрирования: x' = 0 ® , x' = ¥ ® a = -¥;, и фор­мула (2) принимает вид:

=

= , x > 0.

В области x < 0 обозначим: x = -| x | и сделаем замену: ( -| x | -x')2/(4at) = ( | x |+ x')2/(4at) = a2. Тогда , пределы интегрирования: x' = 0 ® , x' = ¥ ® a = ¥;, и фор­мула при­нимает вид:

=

= , x < 0.

Итак, вычисление интеграла (2) приводит к следующему результату:

, x > 0. (3)

, x < 0. (4)

На рисунке изображен вид кривых T(x) в различные моменты времени t1 и t2 > t1 (кри­вые 2 и 3). Тепло постепенно перетекает из более нагретой области в более хо­лодную. В пре­деле при t ® ¥, как видно из формул (3) и (4), во всей сре­­де установится одинаковая тем­пература T = T1 /2 (линия 4), как и должно быть по закону сохранения энергии. В точке x = 0 (в плоскости со­при­кос­но­ве­ния тел) температура равна T1 /2 в любой момент времени, как и долж­но быть из соображений симметрии.

2. Нестационарное одномерное температурное поле в полуограниченной сре­де с за­дан­ной постоянной температурой на поверхности.

Рассмотрим теперь полуограниченную среду, на по­верх­ности которой поддерживается по­стоянная температура T1. Ре­шим сначала задачу для частного случая T1 = 0, а затем обоб­щим полученный результат на ненулевую тем­пературу.

Пусть среда занимает область x > 0 и имеет некоторое про­из­вольное начальное рас­пре­деление температуры T = f(x). Вос­поль­зуемся предыдущим ре­зуль­татом, для чего продолжим (мыс­лен­но) среду в область x < 0, при­чем будем считать, что в этой об­ласти

f (-| x' |) = -f(x') (5)

(см. ри­су­нок). Тогда температурное влияние каж­дой точки из об­лас­ти x > 0 на границу x = 0 будет ком­пен­си­ро­ваться влиянием сим­метричной точки из области x < 0, и гра­ничное условие

 

T(0,t) = T1 = 0

будет, очевидно, удовлетворено автоматически, а распределение температуры в любой в точке x > 0 в любой момент времени можно записать в виде:

.

Учтем во втором интеграле условие (15.5) и одновременно поменяем пределы этого ин­те­гра­ла:

.

Эта формула определяет температуру в любой точке x полуограниченной среды в любой мо­мент времени t, если задана начальная температура среды f(x'), а на поверхности x = 0 под­дер­жи­вается нулевая температура.

Если f(x') = const = T0, то эту величину можно вынести из-под знака интеграла. Тогда, вы­пол­няя вычисления аналогично тому, как это было сделано при выводе формул (3) и (4), на­ходим:

=

= . (6)

Формула (6) определяет температуру в любой точке x полуограниченной среды в любой момент времени t, если начальная температура среды была T0 = const, а на поверхности x = 0 поддерживается нулевая температура T1 = 0.

Обобщить полученный результат на ненулевую температуру на поверхности T1 ¹ 0 проще всего переходом к новой переменной T' = T - T1. Тогда T'0 = (T0 - T1), и

,

отсюда

. (7)

Формула (7) определяет температуру в любой точке x полуограниченной среды в любой момент времени t > 0, если начальная температура среды была T0 = const, а на поверхности x = 0 начиная с момента времени t = 0 поддерживается постоянная температура T1.

Если T0 = 0, то

. (8)

 







Дата добавления: 2015-08-12; просмотров: 695. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия