Студопедия — Метод декомпозиции Данцига - Вулфа
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод декомпозиции Данцига - Вулфа






Глава 6. БЛОЧНОЕ ПРОГРАММИРОВАНИЕ

 

При решении задач большой размерности значительная часть времени тратится на обращения к внешней памяти и это является главным препятствием на пути увеличения размерности задач. Уменьшить число обращений к внешней памяти можно, если удается большую задачу заменить рядом задач существенно меньшей размерности. Приемы и методы, позволяющие выполнять такие преобразования, составляют предмет блочного программирования.

Одним из эффективных методов блочного программирования применительно к линейным задачам является метод декомпозиции Данцига – Вулфа. По данным авторов метод позволяет решать задачи с размерностью n~ 106, m~ 105.

 

Метод декомпозиции Данцига - Вулфа

 

Сначала рассмотрим математические преобразования, приводящие к разбиению исходной задачи, а затем покажем, в каких случаях это дает эффект по сравнению с непосредственным решением большой задачи.

Пусть имеется следующая модель задачи:

L= C T X àmax; (6.1)

AX = B; (6.2)

X ³0, (6.3)

где вектор X имеет размерность n, а вектор Bm.

Условия (6.2), (6.3) определяют допустимое множество задачи D. Представим матрицу А и вектор В в виде двух подматриц:

Тогда условия задачи (6.2)-(6.3) записываются следующим образом:

А (0) Х = В (0); (6.4)

А (1) Х = В (1); (6.5)

Х ³0 (6.6)

Условия (6.4), включающие m0 равенств, порождают допустимое множество D0, а система (6.5) содержит m1 равенств и вместе с (6.6) задает множество D1. Очевидно, что m=m0+m1, D = D0 Ç D1. При этом выделение подматриц выполняется так, что m1 >> m0.

Далее будем полагать, что множество D1 ограниченное и, значит, является выпуклым многогранником. В противном случае его легко сделать ограниченным добавлением ограничений сверху на переменные так, что они не повлияют на исходное множество D.

Предположим, что нам известны вершины множества D1. Обозначим их координаты через Х 1, Х 2,…, Х N, где N – число вершин. Поскольку D1 – выпуклый многогранник, то любую его точку можно представить в виде линейной комбинации вершин:

Х = z n X n; (6.7)

S z n=1; (6.8)

z n³0, " v. (6.9)

Так как все решения Х, определяемые по (6.7)-(6.9), принадлежат D1, то описание (6.7)-(6.9) эквивалентно (6.5), (6.6).

Подставим Х в виде (6.7) в (6.1) и (6.4):

L = C T z n X n;

S A (0) X n z n= B (0).

Считая X n известными, введем обозначения:

С Т Х n= sn; (6.10)

А (0) Х n= Р n. (6.11)

Тогда преобразованная модель задачи запишется в виде

L = s n z nàmax;

P n z n= B (0);

z n=1;

" z n³0.

В этой модели неизвестными являются z n, число которых равно числу вершин многогранника D1. Последнее равенство модели можно объединить со всеми остальными, используя обозначения расширенных векторов

. (6.12)

Тогда окончательно получим:

L = sn z nàmax; (6.13)

z n = ; (6.14)

" z n³0. (6.15)

Задача в виде (6.13) – (6.15) называется координирующей или основной задачей. Главное отличие этой задачи от исходной в несравнимо меньшем числе условий (m0 +1<< m).

Если мы сможем ее решить, то есть найти Z *, то получим решение и исходной задачи, воспользовавшись (6.7):

Х *= z n* X n. (6.16)

Для решения основной задачи применим модифицированный симплекс-метод. Начальное решение можно построить, не зная ни одной вершины, с помощью искусственных переменных zN+i.

Согласно модифицированному методу после получения очередного базисного решения вычисляются относительные оценки. В разд. 4.10 получены формулы:

Перепишем их в обозначениях координирующей задачи:

(6.17)

или окончательно

(6.18)

Мы не можем вычислить все оценки, так как нам не известно даже их число. Но этого и не требуется, достаточно только определить: есть или нет среди них отрицательные. Для ответа на этот вопрос будем искать наименьшую оценку. Если она отрицательная, текущее решение координирующей задачи может быть улучшено введением переменной с этой оценкой. В противном случае констатируется выполнение признака оптимальности.

Итак, задача состоит в следующем:

Dnàmin.

Отбросив в (6.18) константу, запишем ее в виде

(pTA(0)-CT)Xn® (6.19)

Решение задачи (6.19) проблематично, так как минимум ищется на дискретном множестве вершин многогранника D1. Учитывая, что минимизируемая функция линейная, будем искать решение не на вершинах, а на всем многограннике. Известно, что если решение существует, то оно будет достигаться в вершине. Поэтому решение на всем (непрерывном) множестве D1 совпадет с решением задачи (6.19).

Таким образом, задачу (6.19) заменяем эквивалентной:

Lвсп =(pTA(0)-CT)X® (6.20)

A(1)X = B(1); (6.21)

X ³ 0. (6.22)

Эта задача называется вспомогательной. Если она неразрешима, то и исходная задача не имеет решения. Пусть оптимальное решение вспомогательной задачи (6.20)-(6.22) достигается в вершине r. Это означает, что нам становятся известны координаты вершины Xr и оптимальное значение критерия . Тогда согласно формуле (6.18) вычисляем минимальную оценку

(6.23)

Очевидно, что если D r ³0, то и все оценки неотрицательны, и решение координирующей задачи завершено. При отрицательной D r решение продолжается. В базис основной задачи вводится вектор , определяемый по формуле

(6.30)

Направляющий столбец находится разложением этого вектора по текущему базису:

. (6.31)

После определения направляющего элемента и симплекс-преобразования получаем новое решение основной задачи. Коэффициент критерия (6.13) при переменной, введенной в базисное решение, вычисляется согласно (6.10):

sr = C T X r. (6.32)

Теперь по формуле (6.17) находим новый вектор , снова решаем вспомогательную задачу и по полученной минимальной оценке делаем вывод о дальнейших действиях.

Таким образом, решение исходной задачи заменяется многократным решением основной и вспомогательной задач. При этом порядок размерности вспомогательной задачи такой же, как у исходной. Поэтому естественнен вопрос: в каких случаях такой метод эффективен?

Ответ очевиден: в тех случаях, когда сложность решения вспомогательной задачи намного ниже, чем исходной. Такие случаи имеют место, когда матрица условий задачи (после упорядочения строк и столбцов) оказывается почти-блочно-диагональной, как показано на рис. 6.1. Примером может служить задача планирования производства продукции в крупной фирме или холдинге, когда у каждого предприятия своя номенклатура продукции, а некоторые ресурсы являются общими. Подматрица А (0), входящая в параметры координирующей задачи,соответствует ограничениям по общим ресурсам. Такие условия называют связующими. Их относят к основной задаче.

 
 

Остальные условия образуют вспомогательную задачу. При этом подматрица А (1) имеет блочно-диагональную структуру, что позволяет разбить вспомогательную задачу на p независимых задач:

После решения этих задач определяется критерий вспомогательной задачи по очевидной формуле

Таким образом, решение вспомогательной задачи существенно упрощается, если структура матрица условий может быть приведена к блочно-диагональной.

В следующем разделе декомпозиция вспомогательной задачи будет показана на примере решения транспортной задачи.

Применение рассмотренного метода может быть целесообразно и тогда, когда вспомогательная задача имеет особенности, позволяющие решать ее специальными методами.







Дата добавления: 2015-06-29; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия