Студопедия — Плотность грунта сухого (скелетная плотность)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плотность грунта сухого (скелетная плотность)

отношение массы сухого грунта, исключая массу воды в его порах, к занимаемому этим грунтом объему, включая имеющиеся в нем поры

18. Каким способом можно измерить объем глинистого грунта с целью определения его удельного веса?

Двумя способами:

1) по объему вытесненной воды при погружении в нее грунта, который предварительно парафинируется для предотвращения размокания и попадания воды внутрь образца;

2) с помощью режущего кольца, объем внутренней полости которого определяется замером и которое полностью заполняется грунтом.

 

19.20. Что называется пористостью грунта n? Что называется коэффициентом пористости грунта e? В каких пределах могут изменяться пористость и коэффициент пористости грунта?

Пористостью n грунта называется отношение объема пор к полному объему образца грунта. Коэффициентом пористости e или относительной пористостью называется отношение объема пор в образце к объему, занимаемому его твердыми частицами - скелетом, то есть

Теоретически пористость n изменяется в пределах от нуля (поры отсутствуют) до единицы (скелет отсутствует). Соответственно коэффициент пористости e изменяется от нуля (поры отсутствуют) до бесконечности (скелет отсутствует). Пористость не может быть больше единицы, в то время как коэффициент пористости может быть больше единицы (например у лессов, торфа). Коэффициент пористости равен единице, если объем пор равен объему, занятому твердыми частицами.

21. Что называется влажностью грунта и какой она бывает? Может ли влажность грунта быть больше единицы (100 %)?

Влажность грунта бывает весовой и объемной. Весовой влажностью называется отношение веса воды в образце грунта к весу твердых частиц грунта (скелета). Объемной влажностью называется отношение объема воды в образце грунта к объему, занимаемому твердыми частицами (скелетом грунта). Для одного и того же грунта весовая влажность меньше, чем его объемная влажность. Влажность грунта может быть больше единицы или 100 % (например у ила, торфа). Поэтому

22. Что называется коэффициентом (индексом) водонасыщенности грунта Sr и в каких пределах он изменяется?

Коэффициентом (индексом) водонасыщенности, или степенью влажности грунта, называется отношение природной влажности грунта w к влажности, соответствующей полному заполнению пор водой, wsat. Коэффициент водонасыщенности Sr изменяется от нуля (для абсолютно сухого грунта) до единицы (для полностью водонасыщенного грунта). Он вычисляется по формуле

где g w удельный вес воды.

Грунты называются маловлажными при Sr <0,5, влажными при 0,5< Sr <0,8 и насыщенными водой при Sr. >0,8 (рис. 3.11).

Рис.3.11. Классификация грунтов по водонасыщенности  

 

23. Чему равен удельный вес взвешенного в воде грунта?

Удельный вес взвешенного в воде грунта g sb равен удельному весу грунта в атмосфере g за вычетом удельного веса воды g w то есть

g sb =g - g w.

Эта формула пригодна для грунта с любой водонасыщенностью, то есть при полном и неполном заполнении пор водой (в этом случае считается, что воздух, имеющийся в грунте, не замещается водой). Удельный вес грунта, но с полностью заполненными водой порами (w = wsat), то есть когда

может быть определен по формуле

24. Для каких целей нужны классификация грунтов и классификационные показатели?

Классификация грунтов необходима для объективного присвоения грунту одного и того же наименования и установления его состояния вне зависимости от того, кем и в каких целях они производятся. Наименование и состояние грунта устанавливаются по классификационным показателям.

25. Что называется числом (индексом) пластичности Ip глинистого грунта и что оно показывает?

Числом (индексом) пластичности глинистого грунта называется разность между влажностями на границе текучести wL и на границе раскатывания или пластичности wp. Число (индекс) пластичности коррелятивно связано с процентным содержанием в грунте глинистых частиц и может служить классификационным показателем для отнесения глинистого грунта к супеси, суглинку или глине.

При 1< Ip£ 7 глинистый грунт называется супесью, при 7< Ip£ 17 называется суглинком и при Ip >17 - глиной. В данном случае wp и wL выражены в процентах (рис.М.3.17).

Рис.М.3.17. Классификация глинистых грунтов: а - по числу пластичности; б - по состоянию (консистенции)

26. Что такое показатель консистенции IL (индекс текучести) глинистого грунта и зависит ли он от естественной влажности w? В каких пределах он изменяется?

Показатель консистенции IL (индекс текучести) глинистого грунта характеризует состояние глинистого грунта (густоту, вязкость), линейно зависит от естественной влажности, может быть как отрицательным (твердые грунты), так и положительным, в том числе и более единицы (грунты текучей консистенции). При изменении IL в пределах от нуля до единицы грунты имеют пластичную консистенцию.

Показатель консистенции IL определяется в долях единицы по формуле

Для суглинков и глин диапазон изменения IL от нуля до единицы (пластичное состояние) подразделяется на четыре равных поддиапазона: грунты полутвердые, тугопластичные, мягкопластичные и текучепластичные (рис.М.3.19).

27. Где и как обычно определяются показатели физических свойств грунтов?

Показатели физических свойств определяются на образцах грунтов, отобранных из грунтового массива, в стационарных лабораториях или полевых лабораториях, находящихся близ стройплощадок, по стандартизированным методикам.

Показатели некоторых физических свойств грунтов могут определяться непосредственно в полевых условиях без отбора образцов с применением косвенных способов исследования, например зондирования.

28. Чем обусловливается сжимаемость грунтов? За счет чего происходит сжатие полностью водонасыщенных грунтов?

Сжимаемость грунтов обусловливается изменением их пористости вследствие переупаковки частиц, ползучестью водных оболочек, вытеснением воды из пор грунта. Сжатие полностью водонасыщенных грунтов возможно только при условии вытеснения воды из пор грунта.

29. Для чего служит одометр?

Одометр - прибор, служащий для определения сжимаемости грунта. Деформации в одометре возможны только в вертикальном направлении, горизонтальные деформации отсутствуют. Вертикальное напряжение изменяется ступенями и является известным, боковые напряжения реактивные и остаются неизвестными. Деформации измеряются в зависимости от усилия, приложенного на штамп. На рис. М.4.2. показана схема одометра.

30. В каких координатах изображается компрессионная кривая? Какой вид имеет зависимость между осадкой штампа одометра и вызывающей ее нагрузкой? Начертите график.

Компрессионная кривая изображается в координатах: коэффициент пористости e - давление p, МПа. Для полностью водонасыщенных глинистых грунтов она может быть представлена в координатах: влажность w - давление p, МПа. Зависимость осадки штампа s, мм, от нагрузки p, МПа, представлена на графике (рис.М.4.3.).

Рис. М.4.3. Компрессионная кривая

С увеличением давления кривая становится более пологой, так как грунт при этом постепенно уплотняется и становится менее сжимаемым.

31. Как записывается закон сжимаемости в дифференциальной и разностной формах?

Закон сжимаемости в дифференциальной форме имеет вид

где e - коэффициент пористости, p - давление, m 0 - коэффициент сжимаемости, МПа1. Знак минус перед m 0 вызван тем, что при увеличении давления коэффициент пористости уменьшается. В разностной форме этот закон записывается в следующем виде:

и формулируется так: отношение приращений коэффициента пористости и давления есть величина постоянная, равная коэффициенту сжимаемости с обратным знаком.

32. Запишите закон Гука в главных нормальных напряжениях. Сколько независимых характеристик сжимаемости вы знаете?

Закон Гука записывается в следующем виде (ось z совпадает с осью 1, оси y и x соответственно с осями 2 и 3)(рис.М.4.6):

Поскольку оси x, y и z совпадают с главными осями, касательные напряжения вдоль них равны нулю, то есть . Независимых характеристик сжимаемости (деформируемости) для изотропного грунта две: 1) модуль общей (упругой и остаточной) деформации E 0, МПа и 2) коэффициент Пуассона m 0.

Рис.М.4.6. Оси координат

33. Что называется коэффициентом Пуассона и в каких пределах он изменяется?

Коэффициентом Пуассона называется отношение относительных деформаций поперечной e x к продольной e z, взятое с обратным знаком, в случае, если действуют только вертикальные напряжения s z (напряжения s x и s y в этом случае отсутствуют). Коэффициент Пуассона изменяется теоретически от 1 до +0,5, а практически от 0 до +0,5. Коэффициент Пуассона не может быть более 0,5, так как в этом случае при всестороннем сжатии (s x =s y =s z) должен был бы увеличиваться объем грунта, что физически невозможно. Таким образом, при s x =s y =0

.

34. Что называется коэффициентом бокового давления грунта, от чего он зависит и как он связан с коэффициентом Пуаасона?

Коэффициентом бокового давления грунта x называется отношение приращения бокового давления D s x (или D s y) к приращению вертикального давления D s z при обязательном отсутствии боковых деформаций (e x =e y =0), то есть

e x =e y =0.

Боковое давление в этом случае является реактивным. Примером может служить грунт, обжимаемый в одометре. Коэффициент бокового давления зависит от вида грунта, его плотности и влажности. С коэффициентом Пуассона он связан следующей зависимостью:

Он изменяется в пределах от 0 до +1.

35. Запишите закон Дарси. Какова размерность коэффициента фильтрации? От чего он зависит? Что такое начальный градиент фильтрации?

Закон Дарси записывается так

то есть скорость фильтрации пропорциональна градиенту напора i и коэффициенту фильтрации K ф. Коэффициент фильтрации зависит от вида грунта, размера его пор (то есть от линейного размера пор, но не пористости), от температуры жидкости (меняется ее вязкость).

Начальный градиент фильтрации - величина градиента фильтрации в глинистых грунтах, при котором начинается практически ощутимая фильтрация (рис.М.5.5). Закон Дарси с учетом начального градиента фильтрации выражается следующим образом:

при ;

при .

Рис.М.5.5. Зависимость скорости фильтрации от градиента напора

36. Какой вид имеет закон Кулона для несвязного грунта? Что называется углом внутреннего трения песка?

Закон Кулона для несвязного грунта имеет следующий вид (рис.М.11.4,а):

где j - угол внутреннего трения. Угол внутреннего трения следует рассматривать как параметр линейного графика среза образца песчаного грунта, который проведен через начало координат.

Однако в ряде случаев диаграмма может иметь начальный участок c 0, называемый зацеплением. Обычно величина этого зацепления очень невелика.

Рис.М.11.4. Результирующая схема испытания прямым срезом: а - песчаный грунт; б - глинистый грунт

37. От чего зависит угол внутреннего трения песка? Что такое угол естественного откоса и совпадает ли он с углом внутреннего трения?

Угол внутреннего трения зависит от крупности и минералогического состава песка, от его пористости и в значительно меньшей степени от влажности (часто от влажности совсем не зависит). Угол внутреннего трения не совпадает по своей величине с углом естественного откоса, именуемого иногда углом "внешнего трения". Угол естественного откоса влажного песка может быть больше угла внутреннего трения, так как в этом случае действуют капиллярные силы, удерживающие откос от разрушения.

38. Чем вызывается сопротивление срезу связного грунта?

Сопротивление срезу связного глинистого грунта вызывается междучастичными связями - пластичными водно-коллоидными и хрупкими цементационными.

39. Что такое открытая и закрытая системы испытаний глинистого грунта?

При открытой системе вода имеет возможность под действием передающегося на нее давления выходить из пор грунта наружу, то есть отфильтровываться. При закрытой системе вода не имеет возможности выходить из грунта, то есть вода полностью остается в порах грунта и не перемещается.

40. Что такое полное, эффективное и нейтральное давления? Что называется гидростатическим и поровым давлением?

Полное давление - это все давление, приходящееся на данную площадку. Эффективное давление - это часть полного давления, воспринимаемая минеральным скелетом грунта.

Нейтральное давление - давление, воспринимаемое водой. Таким образом, эффективное и нейтральное давления составляют полное давление. Гидростатическое и поровое давления составляют в сумме давление в воде, то есть нейтральное давление. Гидростатическое давление - это давление, которое установится в воде, когда полностью исчезнет избыточное по отношению к нему давление, то есть поровое давление.

Эффективным давление на скелет грунта называется потому, что оно повышает сопротивление грунта срезу.

41. Каково минимальное число опытов для определения угла внутреннего трения j и удельного сцепления c?

Поскольку неизвестных две величины, то и минимальное число опытов - два (потом решаются два уравнения с двумя неизвестными). Для несвязного грунта, у которого c = 0, минимально возможен один опыт, с помощью которого устанавливается величина угла внутреннего трения j. Это и есть минимальное количество опытов, но исключающее возможность статистической обработки результатов.

42. Какие лабораторные методы определения характеристик прочности глинистого грунта вы знаете?

В лабораторных условиях для этой цели используются методы:

- прямого среза;

- трехосного сжатия;

- сжатия-растяжения;

- испытания в приборе с независимым регулированием трех главных напряжений;

- испытания в приборе "шариковой пробы".

45. Как вычислить вертикальные напряжения в массиве грунта от его собственного веса и чему они равны?

Вертикальное напряжение от собственного веса грунта s z представляет собой вес столба грунта над рассматриваемой точкой с площадью поперечного сечения, равной единице. Таким образом, если в точке M на глубине z грунт однородный, получаем s z = g z, если имеются различные слои (рис.М.6.1), то

Рис.М.6.1. Определение давления в грунте от его собственного веса и наличия уровня грунтовой воды

Удельный вес грунта ниже горизонта воды принимается с учетом действия выталкивающей силы за счет взвешивания в воде, поэтому получаем

Давление s z в водоупорном слое принимается с учетом полного веса водонасыщенного грунта (то есть выталкивающая сила не учитывается), который расположен выше:

На границе водоупора в эпюре s z имеет место скачок на величину , причем в данном случае .

46. Следует ли учитывать деформации грунта от его собственного веса и в каких случаях?

Деформации грунта от его собственного веса обычно не учитываются, так как они давно завершились. Однако в том случае, если в силу обстоятельств изменяется структура грунта, то сила собственного веса грунта вызывает в нем дополнительные деформации (например, при увлажнении лессового грунта, изза которого растворяются жесткие цементационные связи, или оттаивания вечномерзлого грунта).

47. Какие основные положения приняты в теории упругости?

Основные положения теории упругости следующие:

1. Тело является сплошным и изотропным (деформационные свойства в различных направлениях одинаковы).

2. Тело является упругим и со снятием нагрузки все деформации исчезают.

3. Напряжения в теле отсутствуют, если нет внешней нагрузки.

4. Тело является "бесконечно" прочным, то есть в нем не возникает разрушений и трещин, изменяющих напряженное состояние.

5. Связь между напряжениями и деформациями является линейной и описывается законом Гука.

48. Какие основные положения приняты в теории линейнодеформируемых тел?

Для того, чтобы можно было воспользоваться решениями задач, имеющимися в теории упругости, приняты следующие положения:

1. Грунт состоит обычно из трех компонентов: минерального скелета, воды и воздуха, однако возможно его рассматривать как квазисплошное тело, то есть тело, имеющее свойства сплош
ного однородного тела, в котором трещины и пустоты отсутствуют. Грунт можно рассматривать как тело изотропное, обладающее одинаковыми деформационными свойствами в разных направлениях.

2. Для грунта характерно наличие остаточных деформаций. При полном снятии нагрузки все деформации не исчезают, а упругие (то есть восстанавливающиеся) бывают часто значительно менее неупругих (остаточных) деформаций. Поэтому в теории линейнодеформируемых тел рассматривается только процесс нагрузки, а процесс разгрузки, если в том есть необходимость, рассматривается особо.

3. Считается, что нагрузки на грунт не вызывают его разрушения и далеки от предельных, поэтому в грунтовом массиве не возникает трещин, разрывов, срезов и т.д., то есть не нарушается "квазисплошность".

4. Связь между полными напряжениями и общими деформациями принимается линейной. Таким образом считается справедливым закон Гука, связывающий напряжения и деформации. Деформации считаются малыми.

49. Чем теория линейнодеформируемых тел отличается от теории упругости?

В теории упругости рассматриваются только упругие тела с восстанавливающими деформациями, а в теории линейнодеформируемых тел рассматриваются общие деформации, включающие также остаточную деформацию.

50. Решение какой задачи теории упругости для полупространства является основным? Чем обусловлена возможность использования его для решения других практически важных задач?

Основным является решение задачи о сосредоточенной силе, приложенной к поверхности полупространства перпендикулярно к граничной плоскости (задача Буссинеска). Для решения задач о нагрузке, имеющей горизонтальную составляющую, рассматривается дальнейшее развитие решения этой же задачи, но при сосредоточенной силе, действующей вдоль граничной плоскости (как бы "прикрепленной" к ней в одной точке, рис. М.7.1.). Аналогичные решения задач о сосредоточенных силах вертикальной и горизонтальной, то есть приложенных перпендикулярно (решение Фламана) и по касательной к границе полуплоскости, также являются основными. Из них путем интегрирования могут быть получены многие решения интересующих нас в практических целях задач.

Рис.М.7.1. Схема приложения сосредоточенных сил при рассмотрении основных задач теории упругости

Q.

51. Чему равны напряжения непосредственно под сосредоточенной силой? Какое предположение делается в отношении зоны, расположенной непосредственно у сосредоточенной силы?

Задача эта является абстрактной, так как в действительности усилия всегда распределяются по некоторой площадке. Непосредственно под сосредоточенной силой напряжения являются бесконечно большими. Предполагается, что сплошная среда является бесконечно прочной и не может разрушаться. Буссинеск, чтобы обойти это обстоятельство, не рассматривал небольшую зону, непосредственно находящуюся у сосредоточенной силы.

52. Как можно воспользоваться теорией размерностей для решения задачи о сосредоточенной силе?

Поскольку напряжение s R зависит от величины силы P, угла между вертикалью и радиусом q, а также радиуса R, то, учитывая, что напряжение должно быть пропорционально силе, она попадает в числитель. Далее выбирается тригонометрическая функция от угла q, четная, не зависящая от знака q, имеющая максимум при q =0 и равная нулю при q =± p /2. Такой простейшей функцией является cosq. Естественно, что этот множитель попадает также в числитель. Поскольку напряжение s R с увеличением расстояния от точки приложения силы должно убывать, то радиус R должен попасть в знаменатель. Однако для того, чтобы уравнять разномерности (слева H/м2, а справа, если R в знаменателе в первой степени, то Н/м, а если во второй степени, то H/м2), необходимо записать R в квадрате, откуда получим

Коэффициент A определяется в соответствии с ответом на вопрос М.7.5. и равен A =3/2p.

 

53. Как следует просуммировать напряжения, если действуют несколько сосредоточенных сил?

Если действуют несколько сосредоточенных сил, то для одной силы Pi, согласно ответу на вопрос М.7.9, имеем

При нескольких сосредоточенных силах получим

Коэффициенты Ki определяются каждый раз отдельно для своих значений ri / z, так как радиус для каждой силы свой.

54. Какое условие накладывается на эпюры напряжений для выполнения условия равновесия?

Для выполнения условия равновесия необходимо, чтобы в случае пространственной задачи объем эпюры s z при заданной постоянной величине z равнялся бы действующей сосредоточенной силе.

В случае плоской задачи это условие сохраняется, однако оно упрощается, и поэтому площадь эпюры s z при постоянной величине z должна быть равна внешней нагрузке.

55. В чем заключается принцип СенВенена в теории упругости?

Принцип СенВенена заключается в том, что с удалением от места приложения усилия напряжения оказываются все менее зависящими от характера этого усилия f (сосредоточенная сила, несколько сосредоточенных сил или распределенная на конечном участке нагрузка) при условии, если равнодействующая всех усилий, приложенных на границе, одинакова.

56*. Каким образом осуществить перенос начала координат при действии сосредоточенной силы в случае плоской задачи?

В случае плоской задачи перенос начала координат вдоль горизонтальной оси x на величину x осуществляется следующим образом. Напряжение s z при совпадении начала координат с точкой приложения силы определяется как

Для того, чтобы перенести начало координат, поскольку под r понимается расстояние между рассматриваемой точкой и точкой приложения силы, следует заменить координату x на x x, а силу P считать распределенной на участке dx, следовательно, нужно заменить P на pdx, причем p будет функцией координаты x (рис.M.8.1,а). Таким образом получим

Рис.М.8.1. Схема для переноса начала координат с целью дальнейшего интегрирования основных зависимостей: а в плоской задаче; б в пространственной задаче (М.8.2)

57. Какие безразмерные координаты можно ввести в случае плоской задачи при загрузке части поверхности полуплоскости равномерно распределенной нагрузкой? Какой угол называется "углом видимости" и почему?

В указанном случае удобно ввести две безразмерные координаты - два угла a и b. Угол a называется углом видимости, поскольку если мы поместим в рассматриваемую точку полуплоскости глаз наблюдателя, то под этим углом мы как бы видим нагрузку. Второй угол b между вертикалью, проходящей через данную точку, и биссектрисой угла видимости a.

58. Какие напряжения называются главными нормальными и какие главными касательными? Сколько главных напряжений в плоской и сколько в пространственной задачах?

Главные нормальные напряжения - это нормальные напряжения, действующие на площадки, на которых отсутствуют касательные напряжения. Главные касательные напряжения - это максимальные касательные напряжения. Если обозначить главные нормальные напряжения через s 1, s 2 и s 3, то главные касательные напряжения равны соответственно:

Главных нормальных напряжений в пространственной задаче - три, в плоской - два. Главных касательных напряжений в случае пространственной задачи - три, в случае плоской задачи - одно

59. Какой вид имеют эпюры вертикальных нормальных напряжений s z в случае плоской задачи, когда на участке границы приложена равномерно распределенная нагрузка?

Эпюры вертикальных нормальных напряжений s z изображены на рис. М.8.6.

Рис.М.8.6. Эпюры напряжений при равномерно распределенной нагрузке на конечном участке полуплоскости или полупространства

60. Что такое изолинии напряжений и какой вид имеют изолинии главных напряжений в случае плоской задачи, когда на участке границы полуплоскости приложена равномерно распределенная нагрузка?

Изолинии напряжений - это линии, во всех точках которых соответствующие напряжения равны. Изолинии главных напряжений, как наибольшего, так и наименьшего, представляются дугами окружностей, проходящих через концевые точки загруженного участка.

69. Каким образом происходит процесс развития областей пластических деформаций под фундаментом с ростом нагрузки?

Считатется, что области пластических деформаций зарождаются у краев фундамента; далее с ростом нагрузки они распространяются вглубь и начинают заходить под фундамент (рис.М12.10). Наконец, при нагрузке, достигающей несущей способности основания, обе области пластических деформаций смыкаются на оси фундамента и происходит резкое проседание его вниз.

70*. Какой вид имеет схема расчета несущей способности основания "по Прандтлю"? Что называется "упругим ядром" и где оно находится?

При расчете величины несущей способности "по Прандтлю" предполагается существование трех зон: зоны с максимально напряженным состоянием I (или зоны пассивного давления), зоны с минимально напряженным состоянием II (или зоны активного давления) и переходной между ними зоны III, позволяющей получить плавное изменение напряжений без скачков в них. При этом предполагается, что нагрузка является равномерной и не имеет горизонтальной составляющей. В действительности мы прикладываем нагрузку с помощью жесткого шероховатого штампа, поэтому непосредственно под ним вместо зоны с минимально напряженным предельным состоянием формируется зона, в которой нет предельного состояния и которая как бы сливается со штампом, составляя с ним одно целое. Эта зона называется "упругим" или "жестким" ядром (рис.М.12.11).

Рис.М.12.11. Очертание различных по характеру напряженного состояния предельных зон по схеме Прандтля

77. Какие основные допущения заложены в расчете осадки способом послойного суммирования? От какого горизонта отсчитывается эпюра природного давления?

Основные допущения следующие:

1. Осадка происходит только при давлениях, превышающих природное давление на отметке заложения подошвы фундамента.

2. Связь между давлением и относительной деформацией линейная и может быть описана зависимостью закона Гука.

3. Напряжения в грунтовом массиве распределяются в соответствии с решениями теории упругости.

4. Рассчитывается эпюра давлений s z по глубине только по оси симметрии нагрузки (x = 0), и эти напряжения считаются одинаковыми вдоль горизонтальной оси x. Таким образом, имеет место некоторое завышение напряжений, действующих вдоль оси x, против средних значений в пределах ширины подошвы фундамента.

5. Считается, что грунт не претерпевает бокового расширения и сжимается только в вертикальном направлении (за счет этого осадка несколько преуменьшается). Схема показана на рис.М.9.5.

Рис.М.9.5. Схема для расчета осадок по способу элементарного суммирования: 1 - элементарный слой до деформации; 2 - то же, после деформации

Эпюра природного давления отсчитывается от отметки поверхности грунта - от природного рельефа.

78. Для каких случаев используется в расчетной практике способ эквивалентного слоя?

Для случаев неоднородных грунтов основания и при расчете затухания осадки во времени по теории фильтрационной консолидации.

81. Что называется "осадочным" давлением и какое обоснование дается тому, что осадка рассчитывается не на полную величину давления?

Осадочным давлением p o именуется разность давлений полного передаваемого основанию через подошву фундамента и "бытового" - природного давления, которое испытывает грунт на отметке заложения подошвы фундамента. Таким образом, осадка рассчитывается не на полную величину прикладываемого давления, а на уменьшенную. Обоснованием для этого служит то, что осадки в грунтовом массиве от веса вышележащей толщи уже завершились, а упругие деформации подъема незначительны, также как и повторные осадки (упругие и остаточные) при нагрузке в пределах давления от вышележащей толщи грунта. Поэтому кривая "осадки-нагрузки" будет иметь вид, показанный на рис.М.9.4.

Рис.М.9.4. Зависимость между осадкой и нагрузкой на штамп: а - нагрузка - полная разгрузка и вторичная нагрузка; б - условная схема, принимаемая в методе элементарного суммирования для расчета осадок

82.83. Какие основные допущения заложены в расчете осадки способом послойного суммирования? От какого горизонта отсчитывается эпюра природного давления?

Основные допущения следующие:

1. Осадка происходит только при давлениях, превышающих природное давление на отметке заложения подошвы фундамента.

2. Связь между давлением и относительной деформацией линейная и может быть описана зависимостью закона Гука.

3. Напряжения в грунтовом массиве распределяются в соответствии с решениями теории упругости.

4. Рассчитывается эпюра давлений s z по глубине только по оси симметрии нагрузки (x = 0), и эти напряжения считаются одинаковыми вдоль горизонтальной оси x. Таким образом, имеет место некоторое завышение напряжений, действующих вдоль оси x, против средних значений в пределах ширины подошвы фундамента.

5. Считается, что грунт не претерпевает бокового расширения и сжимается только в вертикальном направлении (за счет этого осадка несколько преуменьшается). Схема показана на рис.М.9.5.

Рис.М.9.5. Схема для расчета осадок по способу элементарного суммирования: 1 - элементарный слой до деформации; 2 - то же, после деформации

Эпюра природного давления отсчитывается от отметки поверхности грунта - от природного рельефа.

84. Какими принимаются боковые давления при расчете осадки способом послойного суммирования? Можно ли считать, что боковое расширение грунта в этом способе полностью не учитывается?

При расчете осадки способом послойного суммирования боковые деления принимаются такими, какими они получаются при сжатии грунта в одометре, то есть

Хотя при расчете осадок боковое расширение грунта в этом способе и не учитывается (принимается, что боковые деформации равны нулю), но косвенно они учитываются тем, что распределение напряжений получено из решения теории упругости для полупространства (или полуплоскости), в котором считалось, что среда имела возможность боковых перемещений. Таким образом, оно непосредственно не учитывается, а косвенно и частично учтено.

85. В формуле расчета осадки способом послойного суммирования имеется коэффициент b. От чего он зависит?

Коэффициент b определяется из выражения

и, следовательно, зависит только от коэффициента Пуассона грунта (коэффициента относительной поперечной деформации). В СНиП 2.02.01-83 условно принято постоянное значение для b (считается, что b = 0,8).

86. В каких пределах ведется суммирование осадки при расчете методом послойного суммирования?

Всегда ли принимается при определении положения нижней границы сжимаемой толщи коэффициент 0,2?

В методе послойного суммирования осадки суммируются до той отметки, когда осевые дополнительные по отношению к природным напряжения не снизятся до 20 % от природных (бытовых) на этой же отметке. Эта отметка считается нижней границей сжимаемой толщи (В.С.), а осадками за счет сжатия нижерасположенной толщи пренебрегают. Однако, если ниже расположены слабые грунты с модулем деформации E < 5 МПа, то нижнюю границу сжимаемой толщи следует опустить до той отметки, где дополнительные по отношению к природным давления составят 10 % от природных, а не 20 % как обычно.

87*. Получается ли линейная зависимость осадки от нагрузки в методе послойного суммирования?

Нет, не получается в связи с тем, что положение нижней границы сжимаемой толщи изменяется в зависимости от действующего сверху осадочного давления - чем больше осадочное давление, тем ниже при прочих равных условиях будет положение нижней границы сжимаемой толщи. Поэтому зависимость осадки от нагрузки не будет линейной.

88. От каких факторов зависит положение нижней границы сжимаемой толщи в методе послойного суммирования (будет ли она располагаться ниже или выше)?

Зависит от:

- уде




<== предыдущая лекция | следующая лекция ==>
Стена в грунте | Цели и задачи изучения дисциплины.

Дата добавления: 2015-07-04; просмотров: 3969. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия