Студопедия — 2 страница. в) частость события А отличается от его вероятности р не более, чем на величину Δ > 0 (по абсолютной величине)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

2 страница. в) частость события А отличается от его вероятности р не более, чем на величину Δ > 0 (по абсолютной величине)






в) частость события А отличается от его вероятности р не более, чем на величину Δ > 0 (по абсолютной величине), т.е. .

□ 1) Неравенство равносильно двойному неравенству пр - Е ~ т ~ пр + Е. Поэтому по интегральной формуле :

.

2) Неравенство равносильно неравенству a ≤ m ≤ b при a = nα и b = nβ. Заменяя в формулах и , величины а и b полученными выражениями, получим доказываемые формулы и , .

3) Неравенство равносильно неравенству . Заменяя в формуле , получим доказываемую формулу .

Пример. По статистическим данным в среднем 87% новорожденных доживают до 50 лет. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более, чем на 0,04 (по абсолютной величине)?

Решение. а) Вероятность р того, что новорожденный доживет до 50 лет, равна 0,87. Т.к. n = 1000 велико (условие npq = 1000·0,87·0,13 = 113,1 ≥ 20 выполнено), то используем следствие интегральной теоремы Муавра-Лапласа. Вначале определим:

, . Теперь по формуле :

.

Б) По формуле :

. Так как неравенство равносильно неравенству , полученный результат означает, что практически достоверно, что от 0,83 до 0,91 числа новорожденных из 1000 доживут до 50 лет.

12. Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.

Под случайной величиной понимается переменная, которая в рез-те испытания в зав-ти от случая принимает одно из возможного множества своих значений (какое именно - заранее не известно).

Примеры случайных величин: 1) число родившихся детей в течение суток в г. Москве; 2) количество бракованных изделий в данной партии; 3) число произведенных выстрелов до первого попадания; 4) дальность полета артиллерийского снаряда; 5) расход электроэнергии на пр-тии за месяц.

Случайная величина называется дискретной (прерывной), если множество ее значений конечное, или бесконечное, но счетное.

Под непрерывной случайной величиной будем понимать величину, бесконечное несчетное множество значений которой - некоторый интервал (конечный или бесконечный) числовой оси.

Так, в приведенных выше примерах 1-3 имеем дискретные случайные величины (в примерах 1 и 2 - с конечным множеством значений; в примере 3 - с бесконечным, но счетным множеством значений); а в примерах 4 и 5 - непрерывные случайные величины.

Определение. Случайной величиной Х называется функция, заданная на множестве элементарных исходов (или в пространстве элементарных событий), т.е. , где где ω - элементарный исход (или элементарное событие, принадлежащее пространству Ω, т.е. .

Для дискретной случайной величины множество возможных значений случайной величины, т.е. функции , конечно или счетно, для непрерывной - бесконечно и несчетно.

Случайные величины обозначаются прописными буквами латинского алфавита Х,У,Z,..., а их значения - соответствующими строчными буквами х,у,z,....

Определение. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Про случайную величину говорят, что она «распределена» по данному закону распределения или «подчинена» этому закону распределения.

Для дискретной случайной величины закон распределения м.б. задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины Х является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

х1 х2 xi хn
p1 p2 pi pn

Или .

Такая таблица называется рядом распределения дискретной случайной величины.

События Х=х1, Х=x2,…,Х=xn, состоящие в том, что в результате испытания случайная величина Х примет соответственно значения х1, x2,..., xn являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), Т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Т.о., для любой дискретной случайной величины .

Ряд распределения м.б. изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей.

Две случайные величины называются независимыми, если закон распределения одной из них не меняется от того, какие возможные значения приняла другая величина. Так, если дискретная случайная величина Х может принимать значения xi (i = 1, 2,..., n), а случайная величина У - значения yj (j = 1, 2,..., m), то независимость дискретных случайных величин Х и У означает независимость событий Х = xi и У = y при любых i = 1, 2,..., n и j = 1, 2,..., m. В противном случае случайные величины называются зависимыми.

Например, если имеются билеты двух различных денежных лотерей, то случайные величины Х и Y, выражающие соответственно выигрыш по каждому билету (в денежных единицах), будут независимыми, т.к. при любом выигрыше по билету одной лотереи (например, при Х = xi) закон распределения выигрыша по другому билету (У) не изменится.

Если же случайные величины Х и У выражают выигрыш по билетам одной денежной лотереи, то в этом случае Х и У являются зависимыми, ибо любой выигрыш по одному билету (Х = xi) приводит к изменению вероятностей выигрыша по другому билету (У), т.е. к изменению закона распределения У.

13. Математические операции над дискретными случайными ве­личинами и примеры построения законов распределения для КХ, Х'1, X + К, XV по заданным распределениям независимых случай­ных величин X и У.

Определим математические операции над дискретными случайными величинами.

Пусть даны две случайные величины:

Х:

xi х1 х2 хn
pi p1 p2 pn

 

У:

уj y1 y2 ym
Pj p1 p2 pm

 

 

Произведением kX случайной величины Х на постоянную величину k называется случайная величина, которая принимает значения kxi с теми же вероятностями рi (i = 1,2,...,n).

m-й степенью случайной величины Х, т.е. , называется случайная величина, которая принимает значения с теми же вероятностями рi (i = 1,2,...,n).

Суммой (разностью или произведением) случайных величин Х и У называется случайная величина, которая принимает все возможные значения вида хi+уj (хj-уj или хj·уj), где i = l,2,...,n; j =1,2,...,m, с вероятностями pij того, что случайная величина Х примет значение xi, а у - значение yj:

.

Если случайные величины Х и У независимы, т.е. независимы любые события Х=хi, Y=yj то по теореме умножения вероятностей для независимых событий

.

3амечание. Приведенные выше определения операций над дискретными случайными величинами нуждаются в уточнении: так как в ряде случаев одни и те же значения , , могут получаться разными способами при различных xi, yj с вероятностями pi, pij, то вероятности таких повторяющихся значений находятся сложением полученных вероятностей pi или pij.

Вид операции Выражение знач. Сл\в Выр знач вер-ти
не изм-ся
не изм-ся
x+y
xy

 

14. Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.

Закон (ряд) распределения дискретной случайной величины дает исчерпывающую информацию о ней, т.к. позволяет вычислить вероятности любых событий, связанных со случайной величиной. Однако такой закон (ряд) распределения бывает трудно обозримым, не всегда удобным (и даже необходимым) для анализа. Рассмотрим, например, задачу.

Задача. Известны законы распределения случайных величин Х и У - числа очков, выбиваемых l-м и 2-м стрелками.

Необходимо выяснить, какой из двух стрелков стреляет лучше.

Рассматривая ряды распределения случайных величин Х и У, ответить на этот вопрос далеко не просто из-за обилия числовых значений. К тому же у первого стрелка достаточно большие вероятности (например, больше 0,1) имеют крайние значения числа выбиваемых очков (Х = 0;1 и Х = 9;10), а у второго стрелка - промежуточные значения (У = 4;5;6) (см. многоугольники распределения вероятностей Х и У на рис).

Очевидно, что из двух стрелков лучше стреляет тот, кто в среднем выбивает большее количество очков. Таким средним значением случайной величины является ее математическое ожидание.

Определение. Математическим ожиданием, или средним значением, М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

Обратим внимание на механическую интерпретацию математического ожидания. Если предположить, что каждая материальная точка с абсциссой xi имеет массу, равную pi (i = 1,2,...,n), а вся единичная масса распределена между этими точками, то математичекое ожидание представляет собой абсциссу центра масс системы материальных точек. Так, для систем материальных точек, соответствующим распределениям Х и У в примере, центры масс совпадают: М(Х) = М(У) = 5,36 (см. рис.).

Если дискретная случайная величина Х принимает бесконечное, но счетное множество значений x1,x2,...,xn,..., то математическим ожиданием, или средним значением, такой дискретной случайной величины называется сумма ряда (если он абсолютно сходится):

Так как данный ряд может и расходиться, то соответствующая случайная величина может и не иметь математического ожидания. Например, случайная величина Х с рядом распределения

не имеет математического ожидания, ибо сумма ряда равна ∞. На практике, как правило, множество возможных значений случайной величины распространяется лишь на ограниченный участок оси абсцисс и, значит, математическое ожидание существует.

Рассмотрим свойства математического ожидания.

1. Математическое ожидание постоянной величины равно са­ мой постоянной: .

□ Постоянную величину С можно рассматривать как величину, принимающую значение С с вероятностью 1. Поэтому М(С) = С·1 = 1.■

2. Постоянный множитель можно выносить за знак математического ожидания, т.е. M(kX) = kM(X).

□ Так как случайная величина kX принимает значения kxi (i = 1,2,...,n), то

3. Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.e. М (Х ± У) = М(Х) ± М(У).

□ В соответствии с определением суммы и разности случайных величин Х+У (Х-У) представляют случайную величину, которая принимает значения xi+yj (xi-yj) (i = 1,2,...,n) (j = 1,2,...,m) с вероятностями рij = Р[(Х = хi)(У = yj)].

Поэтому .

Так как в первой двойной сумме xi не зависит от индекса j, по которому ведется суммирование во второй сумме, и аналогично во второй двойной сумме yj не зависит от индекса i, то

.■

4. Математическое ожидание произведения конечного числа независимых случайных величин равно произведению их математических ожиданий: М(ХУ) = М(Х)М(У).

□ В соответствии с определением произведения случайных величин, ХУ представляет собой случайную величину, которая принимает значения xiyi (i = 1,2,...,n) (j = 1,2,...,m) с вероятностями Рij = P[(Х = хi)(У = yj)], причем в силу независимости Х и У pij = pipj. Поэтому .■

5. Если все значения случайной величины увеличить (уменьшить) на постоянную С, то на эту же постоянную С увеличится (уменьшится) математическое ожидание этой случайной величины: М(Х ± С) = М(Х) ± С.

□ Учитывая свойства 3 и 1 математического ожидания, получим М(Х ± С) = М(Х) ± М(С) = М(Х) ± С.■

6. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю: М[Х-М(Х)] =0.

□ Пусть постоянная С есть математическое ожидание а = М(Х), т.е. С = а. Тогда, используя свойство 5, получим

М(Х - а) = М(Х) - а = а - а = о. ■

15. Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.

Определение. Дисперсией D(Х) случайной величины Х называется математическое ожидание квадрата ее отклонения от математического ожидания: или , где

Доказательство. С учетом того, что мат ожид М(Х) и квадрат мат-го ожид М2(Х) – величины постоянные, можно записать:

В качестве характеристики рассеяния нельзя брать математическое ожидание отклонения случайной величины от ее математического ожидания , ибо согласно свойству 6 математического ожидания эта величина равна нулю для любой случайной величины.

Выбор дисперсии, определяемой по формуле, в качестве характеристики рассеяния значений случайной величины Х оправдывается также тем, что, как можно показать, математическое ожидание квадрата отклонения случайной величины Х от постоянной величины С минимально именно тогда, когда эта постоянная С равна математическому ожиданию , т.е. .

Если случайная величина Х - дискретная с конечным числом значений, то (3.11).

Если случайная величина Х - дискретная с бесконечным, но счетным множеством значений, то (если ряд в правой части равенства сходится).

Дисперсия D(Х) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину .

Определение. Средним квадратическим отклонением (стандартным отклонением или стандартом) случайной величины Х называется арифметическое значение корня квадратного из ее дисперсии:

Свойства дисперсии случайной величины.

  1. Дисперсия постоянной величины равна нулю: .

. ■

2. Постоянный множитель можно выносить за знак дисперсии, возведя его при этом в квадрат: .

□ Учитывая свойство 2 математического ожидания, получим . ■

3. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания: (3.16) или где .

□ Пусть М(Х) = а. Тогда D(Х) = М(Х - а)2 = М(Х2 - 2аХ + а2). Учитывая, что а - величина постоянная, неслучайная, найдем

D(Х) = М(Х)2 - 2аМ(Х) + а2 = М(Х2) - 2а·а + а2 = M(X2) - a2.

Это свойство часто используют при вычислении дисперсии. Вычисление по формуле (3.16) дает, например, упрощение расчетов по сравнению с основной формулой (3.11), если значения xi случайной величины - целые, а математическое ожидание, а значит, и разности (xi - а) - нецелые числа.

4. Дисперсия алгебраической суммы конечного числа независимых случайных величин равна сумме их дисперсий: .

□ По свойству 3: . Обозначая , и учитывая, что для независимых случайных величин М(ХУ)=М(Х)М(У), получим

.■

Обращаем внимание на то, что дисперсия как суммы, так и разности независимых случайных величин Х и У равна сумме их дисперсий, т.е. .

Если использовать механическую интерпретацию распределения случайной величины, то ее дисперсия представляет собой момент инерции распределения масс относительно центра масс (математического ожидания).

3амечание. Обратим внимание на интерпретацию математического ожидания и дисперсии в финансовом анализе. Пусть, например, известно распределение доходности Х некоторого актива (например, акции), т.е. известны значения доходности xi и соответствующие их вероятности pi за рассматриваемый промежуток времени. Тогда, очевидно, математическое ожидание М(Х) выражает среднюю (прогнозную) доходность актива, а дисперсия D(X) или среднее квадратическое отклонение - меру отклонения, колеблемости доходности от ожидаемого среднего значения, т.е. риск данного актива.

Математическое ожидание, дисперсия, среднее квадратическое отклонение и другие числа, призванные в сжатой форме выразить наиболее существенные черты распределения, называются числовыми характеристиками случайной величины.

Обращаем внимание на то, что сама величина Х - случайная, а ее числовые характеристики являются величинами неслучайными, постоянными.

16. Функция распределения случайной величины, ее определе­ние, свойства и график.

Определение. Функцией распределения случайной величины Х называется функция F(х), выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х: .

Функцию F(x) иногда называют интегральной функцией распределения или интегральным законом распределения.

Геометрически функция распределения интерпретируется как вероятность того, что случайная точка Х попадет левее за данной точки х.

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений. Сумма всех скачков функции F(х) равна 1.

Общие свойства функции распределения.

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей: .

☺ Утверждение следует из того, что функция распределения – это вероятность. ☻

  1. Функция распределения случайной величины есть неубывающая функция на всей числовой оси.

☺ Пусть и - точки числовой оси, причем > . Покажем, что . Рассмотрим 2 несовместных события , . Тогда .

Это соотношение между событиями легко усматривается из их геометрической интерпретации (рис.3.6). По теореме сложения :

или откуда .

Так как вероятность , то , т.е. - неубывающая функция. ☻

  1. На минус бесконечности функция распределения равна нулю, на плюс бесконечности равна единице, т.е.

.

как вероятность невозможного события .

как вероятность достоверного события . ☻

4. Вероятность попадания случайной величины в интервал (включая ) равна при ращению ее функции распределения на этом интервале, т.е.:







Дата добавления: 2015-08-12; просмотров: 868. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия